Seminar: Robot Perception for Navigation

Dr. Tim Welschehold, Johannes Meyer, Adriana Gomez, Jannik Zürn, Shengshao Yan, Kürsat Petek, Chenguang Huang

Robots need to perceive the environment

High Variability in Inputs

Requirements for the Seminar

- Be registered for the seminar
- Send us your list of paper preferences by Date: Friday, October 31st 2022
- Seminar will be a "Blockseminar" on one or two days in the end of the semester
- "How to give a talk"-talk on one date TBD (earlymid december)

Requirements for the Seminar

- Rather advanced topics of state-of-the-art research in Robotics and Deep Learning
- You should be proficient in
 - Mobile Robotics
 - Deep Learning

Requirements for the Seminar

 Write a 2-page* summary of your assigned paper, discuss it with your supervisor by

Date: Wednesday, December 14th 2022

- Give a 20 minute talk with a 10 minute discussion
 Date: TBD (assumed in-person)
- Finalize your summary (3-page*) by adding ideas on how another approach could be integrated or what similarities to other presented approaches are

Date: two weeks after the presentation

List of Papers

ID	Supervisor	Titel				
		SegContrast: 3D Point Cloud Feature Representation Learning Through				
1	Johannes	Self-Supervised Segment Discrimination				
		Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for				
2	Johannes	Autonomous Vehicles				
3	Johannes	Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles				
		CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with				
4	Adriana	Transformers				
5	Adriana	Semantic Segmentation for Thermal Images: A Comparative Survey				
6	Jannik	Lane-Level Street Map Extraction from Aerial Imagery				
7	Jannik	Objects that Sound				
8	Shengchao	Learning robust perceptive locomotion for quadrupedal robots in the wild				
9	Shengchao	Learning High-Speed Flight in the Wild				
10	Kürsat	BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework				
		Unsupervised Semantic Segmentation by Contrasting Object Mask				
11	Kürsat	Proposals				
12	Chenguang	Grounded Language-Image Pre-Training				
13	Chenguang	Scaling Open-Vocabulary Image Segmentation with Image-Level Labels				

1: SegContrast: 3D Point Cloud Feature Representation Learning Through Self-Supervised Segment Discrimination

A Survey on Contrastive Self-Supervised Learning

2: Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for Autonomous Vehicles

Fig. 2: Given a point cloud \mathcal{P} and set of instance proposals \mathcal{I} , we iterate over each proposal \mathcal{S}_k defining a region of interest $\hat{\mathcal{S}}_k$ around the proposal. We extract point-wise features $\hat{\mathcal{F}}_k$ for this proposal region using a network ϕ pre-trained with SegContrast [28]. Then, we build a graph weighting the neighborhood edges with the features affinity, and the foreground and background edges given the sampled seeds. Finally, we apply a min-cut over the graph to segment the instance from the background.

Supervisor: Johannes

3: Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles

Fig. 2: UAV system setup and hardware design.

Fig. 3: Perception system overview.

Supervisor: Johannes

4: CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers

Supervisor: Adriana

5: Semantic Segmentation for Thermal Images: A Comparative Survey

Supervisor: Adriana

6: Lane-Level Street Map Extraction from Aerial Imagery

(b) Mapping pipeline for lane-level street map extraction

7: Objects that Sound

(a) Input image with sound

(b) Where is the sound?

Supervisor: Jannik

8: Learning robust perceptive locomotion for quadrupedal robots in the wild

Supervisor: Shengshao

9: Learning High-Speed Flight in the Wild

Supervisor: Shengshao

10: BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

Supervisor: Kürsat

11: Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

12: Grounded Language-Image Pre-Training

Two syringes and a small vial of vaccine.

playa esmeralda in holguin, cuba. the view from the top of the beach. beautiful caribbean sea turquoise

Supervisor: Chenguang

13: Scaling Open-Vocabulary Image Segmentation with Image-Level Labels

Supervisor: Chenguang 20

Next steps

We will publish the list of papers on our webpage

http://ais.informatik.uni-

freiburg.de/teaching/ws22/robot perception navigation/

Course type	Booking period 1 (includes de- registration)	Seat allocation	Booking period 2 (includes de- registration)	De-registration period
(Pro)Seminars in Computer Science	17. Oct. till 24. Oct. 2022 (Submission of booking requests with priorities)	 25. Oct. 2022 (Manual check and adjustment by lecturers) 26. Oct. 2022 (seat allocation and check) 	27. Oct. 2022 till 2 pm: Release of information for students from 2 pm: de-regsitration possible	28. Oct. 2022 De-registration possible Afterwards, no more de- registration possible!

SS 2019

SS 2018

WS 2017/18

WS 2018/19

Startseite

Aktuelles

Forschung

Datensätze

WS 2022/23

Lehre

Forschungsprojekte

Studierendenprojekte

Schnellzugriff

- Seminar Robot Navigation **Requirements & Information** Organizer: Dr. Tim Welschehold I Co-Organizers: Johannes Meyer . TBD Students are requested to: Write a two-page abstract (prior to the talk) of the assigned paper. Prepare a talk of 20 minutes. presentend in the seminar. Everything is supposed to be done in English. The two-page summary is due on Wednesday, December 14th, 2022. supervisor two weeks before the presentation. The Presentations will take place on TBA. List of Seminar Topics: 3. Real-Time Multi-Modal Semantic Fusion on Unmanned Aerial Vehicles @ 4. CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers and 5. Semantic Segmentation for Thermal Images: A Comparative Survey D 6. Lane-Level Street Map Extraction from Aerial Imagery Z 7. Objects that Sound a 8. Learning robust perceptive locomotion for quadrupedal robots in the wild a 9. Learning High-Speed Flight in the Wild

BUR

ᢙ

■ The first meeting will take place on Monday. October 17th 2022 at 15:00-16:00 in an online zoom meeting link Z

Autonome Intelligente Systeme

山

Albert-Ludwigs-Universität Freiburg

Sie sind hier: Startseite > Lehre > WS 2022/23 > Seminar: Robot Perception for Navigation

Seminar Robot Perception For Navigation - WS 2022/23

- . Write a finalized three-page abstract, in which they additionally discuss connections from their paper to others
- The Seminar will be held as a "Blockseminar" in the end of the Semester. The slides should be discussed with the
- 1. SegContrast: 3D Point Cloud Feature Representation Learning Through Self-Supervised Segment Discrimination ar
- 2. Unsupervised Class-Agnostic Instance Segmentation of 3D LiDAR Data for Autonomous Vehicles @

- 10. BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework at
- 11. Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals d
- 12. Grounded Language-Image Pre-training d
- 13. Scaling Open-Vocabulary Image Segmentation with Image-Level Labels and

Next step: After seat allocation

Send mail with your paper preference to

robot-perception-navigation@cs.uni-freiburg.de

e.g. ["Name", 3, 1, 4, 5, 6, 8, 2, 7, 9, 9, 9, 9, 9, 9]

Thank you for your attention!