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Abstract. The goal of this paper is to discover a set of discriminative
patches which can serve as a fully unsupervised mid-level visual repre-
sentation. The desired patches need to satisfy two requirements: 1) to
be representative, they need to occur frequently enough in the visual
world; 2) to be discriminative, they need to be different enough from the
rest of the visual world. The patches could correspond to parts, objects,
“visual phrases”, etc. but are not restricted to be any one of them. We
pose this as an unsupervised discriminative clustering problem on a huge
dataset of image patches. We use an iterative procedure which alternates
between clustering and training discriminative classifiers, while applying
careful cross-validation at each step to prevent overfitting. The paper ex-
perimentally demonstrates the effectiveness of discriminative patches as
an unsupervised mid-level visual representation, suggesting that it could
be used in place of visual words for many tasks. Furthermore, discrim-
inative patches can also be used in a supervised regime, such as scene
classification, where they demonstrate state-of-the-art performance on
the MIT Indoor-67 dataset.

1 Introduction

Consider the image in Figure 1. Shown in green are the two most confident visual
words [1] detected in this image and the corresponding visual word clusters.
Shown in red are the two most confident detections using our proposed mid-level
discriminative patches, computed on the same large, unlabeled image dataset as
the visual words without any supervision. For most people, the representation
at the top seems instantly more intuitive and reasonable. In this paper, we will
show that it is also simple to compute, and offers very good discriminability,
broad coverage, better purity, and improved performance compared to visual
word features. Finally, we will also show how our approach can be used in a
supervised setting, where it demonstrates state-of-the-art performance on scene
classification, beating bag-of-words, spatial pyramids [2], ObjectBank [3], and
scene deformable-parts models [4] on the MIT Indoor-67 dataset [5].

What are the right primitives for representing visual information? This is
a question as old as the computer vision discipline itself, and is unlikely to be
settled anytime soon. Over the years, researchers have proposed a plethora of
different visual features spanning a wide spectrum, from very local to full-image,
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Fig. 1. The top two detected Visual Words (bottom) vs. Mid-level Discriminative
Patches (top), trained without any supervision and on the same large unlabeled dataset.

and from low-level (bottom-up) to semantic (top-down). In terms of spatial
resolution, one extreme is using the pixel itself as a primitive. However there is
generally not enough information at a pixel level to make a useful feature – it
will fire all the time. At the other extreme, one can use the whole image as a
primitive which, while showing great promise in some applications [6, 7], requires
extraordinarily large amounts of training data, since one needs to represent all
possible spatial configurations of objects in the world explicitly. As a result, most
researchers have converged on using features at an intermediate scale: that of an
image patch.

But even if we fix the resolution of the primitive, there is still a wide range
of choices to be made regarding what this primitive aims to represent. From
the low-level, bottom-up point of view, an image patch simply represents the
appearance at that point, either directly (with raw pixels [8]), or transformed
into a different representation (filterbank response vector [9], blurred [10, 11]
or spatially-binned [12, 13] feature, etc). At a slightly higher level, combining
such patches together, typically by clustering and histogramming, allows one to
represent texture information (e.g., textons [9], dense bag-of-words [2], etc). A
bit higher still are approaches that encode image patches only at sparse interest-
points in a scale- and rotation-invariant way, such as in SIFT matching [12].
Overall, the bottom-up approaches work very well for most problems involving
exact instance matching, but their record for generalization, i.e. finding similar
instances, is more mixed. One explanation is that at the low-level it is very hard
to know which parts of the representation are the important ones, and which
could be safely ignored.

As a result, recently some researchers have started looking at high-level fea-
tures, which are already impregnated with semantic information needed to gen-
eralize well. For example, a number of papers have used full-blown object detec-
tors, e.g. [14], as features to describe and reason about images (e.g. [15, 3, 16]).
Others have employed discriminative part detectors such as poselets [17], at-
tribute detectors [18], “visual phrases” [19], or “stuff” detectors [20] as features.
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However, there are significant practical barriers to the wide-spread adaptation of
such top-down semantic techniques. First, they all require non-trivial amounts
of hand-labeled training data per each semantic entity (object, part, attribute,
etc). Second, many semantic entities are just not discriminative enough visually
to act as good features. For example, “wall” is a well-defined semantic category
(with plenty of training data available [21]), but it makes a lousy detector [21]
simply because walls are usually plain and thus not easily discriminable.

In this paper, we consider mid-level visual primitives, which are more adapt-
able to the appearance distributions in the real world than the low-level features,
but do not require the semantic grounding of the high-level entities. We propose
a representation called mid-level discriminative patches. These patches could
correspond to parts, objects, “visual phrases”, etc. but are not restricted to be
any one of them. What defines them is their representative and discriminative
property: that is, that they can be detected in a large number of images with high
recall and precision. But unlike other discriminative methods which are weakly
supervised, either with image labels (e.g.,[22]) or bounding-box labels (e.g., [14]),
our discriminative patches can be discovered in a fully unsupervised manner –
given only a large pile of unlabeled images1. The key insight of this paper is to
pose this as an unsupervised discriminative clustering problem on a huge unla-
beled dataset of image patches. We use an iterative procedure which alternates
between clustering and training discriminative classifiers (linear SVMs), while
applying careful cross-validation at each step to prevent overfitting. Some of the
resulting discriminative patches are shown in Figure 2.

Prior Work: Our goals are very much in common with prior work on finding
good mid-level feature representations, most notably the original “visual words”
approach [1]. Given sparse key-point detections over a large dataset, the idea is
to cluster them in SIFT space in an effort to yield meaningful common units
of visual meaning, akin to words in text. However, in practice it turns out that
while some visual words do capture high-level object parts, most others “end
up encoding simple oriented bars and corners and might more appropriately be
called ‘visual phonemes’ or even ‘visual letters’.” [24]. The way [24] addressed
these shortcomings was by using image segments as a mid-level unit for finding
commonality. Since then, there has been a large body of work in the general
area of unsupervised object discovery [25–31]. While we share some of the same
conceptual goals, our work is quite different in that: 1) we do not explicitly aim
to discover whole semantic units like objects or parts, 2) unlike [25, 27, 30], we
do not assume a single object per image, 3) whereas in object discovery there
is no separate training and test set, we explicitly aim to discover patches that
are detectable in novel images. Because only visual words [1] have all the above
properties, that will be our main point of comparison.

Our paper is very much inspired by poselets [17], both in its goal of finding
representative yet discriminative regions, and its use of HOG descriptors and

1 N.B.: The term “unsupervised” has changed its meaning over the years. E.g., while
the award-winning 2003 paper of Fergus et al. [23] had “unsupervised” in its title,
it would now be considered a weakly supervised method.
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Fig. 2. Examples of discovered discriminative patches that were highly ranked.

linear SVMs. However, poselets is a heavily-supervised method, employing labels
at the image, bounding box, and part levels, whereas our approach aims to solve
a much harder problem without any supervision at all, so direct comparisons
between the two would not be meaningful. Our work is also informed by [32], who
show that discriminative machinery, such as a linear SVM, could be successfully
used in a fully unsupervised manner.

2 Discovering Discriminative Patches

Given an arbitrary set of unlabeled images (the “discovery dataset” D), our goal
is to discover a relatively small number of discriminative patches at arbitrary
resolution which can capture the “essence” of that data. The challenge is that
the space of potential patches (represented in this paper by HOG features [13])
is extremely large since even a single image can generate tens of thousands of
patches at multiple scales.
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2.1 Approach Motivation

Of our two key requirements for good discriminative patches – to occur fre-
quently, and to be sufficiently different from the rest of the visual world – the
first one is actually common to most other object discovery approaches. The
standard solution is to employ some form of unsupervised clustering, such as k-
means, either on the entire dataset or on a randomly sampled subset. However,
running k-means on our mid-level patches does not produce very good clusters, as
shown on Figure 3 (Initial KMeans). The reason is that unsupervised clustering
like k-means has no choice but to use a low-level distance metric (e.g. Euclidean,
L1, cross-correlation) which does not work well for medium-sized patches, of-
ten combining instances which are in no way visually similar. Of course, if we
somehow knew that a set of patches were visually similar, we could easily train
a discriminative classifier, such as a linear SVM, to produce an appropriate sim-
ilarity metric for these patches. It would seem we have a classic chicken-and-egg
problem: the clustering of the patches depends on a good similarity, but learning
a similarity depends on obtaining good clusters.

But notice that we can pose this problem as a type of iterative discriminative
clustering. In a typical instantiation, e.g. [33], an initial clustering of data is
followed by learning a discriminative classifier for each cluster. Based on the
discriminatively-learned similarity, new cluster memberships can be computed
by reassigning data points to each cluster, etc.. In principle, this procedure will
satisfy both of our requirements: the clustering step will latch onto frequently
occurring patches, while the classification step will make sure that the patches in
the clusters are different enough from the rest, and thus discriminative. However,
this approach will not work on our problem “as is” since it is infeasible to use a
discovery dataset large enough to be representative of the entire visual world –
it will require too many clusters.

To address this, we turn the classification step of discriminative clustering
into a detection step, making each patch cluster into a detector, trained (using
a linear SVM) to find other patches like those it already owns. This means that
each cluster is now trained to be discriminative not just against the other clusters
in the discovery dataset D, but against the rest of the visual world, which we
propose to model by a “natural world dataset” N . The only requirement of N is
that it be very large (thousands of images, containing tens of millions of patches),
and drawn from a reasonably random image distribution (we follow [32] in simply
using random photos from the Internet). Note that N is not a “negative set”,
as it can (and most likely will) contain visual patterns also found in D (we also
experimented with D ⊂ N ).

It is interesting to note the similarity between this version of discriminative
clustering and the root filter latent updates of [14]. There too, a cluster of patches
(representing an object category) is being iteratively refined by making it more
discriminative against millions of other image patches. However, whereas [14]
imposes overlap constraints preventing the cluster from moving too far from
the supervised initialization, in our unsupervised formulation the clusters are
completely unconstrained.
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Fig. 3. Few examples to show how our iterative approach, starting with initial k-means
clustering, converges to consistent clusters (Iter 4). While standard discriminative clus-
tering approach (second row) also converges in some cases (1st column), in vast major-
ity of cases it memorizes and overfits. Note that our approach allows clusters to move
around in x,y and scale space to find better members (Oval in 3rd column).

Alas, our proposed discriminative clustering procedure is still not quite enough.
Consider Figure 3 which shows three example clusters: the top row is simple ini-
tialization using k-means, while the second row shows the results of the discrimi-
native clustering described above. The left-most cluster shows good improvement
compared to initialization, but the other two clusters see little change. The cul-
prit seems to be the SVM – it is so good at “memorizing” the training data,
that it is often unwilling to budge from the initial cluster configuration. To com-
bat this, we propose an extremely simple but surprisingly effective solution –
cross-validation training. Instead of training and classifying the same data, we
divide our input dataset into two equal, non-overlapping subsets. We perform
a step of discriminative clustering on the training subset, but then apply our
learned discriminative patches on the validation subset to form clusters there.
In this way, we are able to achieve better generalization since the errors in the
training set are largely uncorrelated with errors in the validation set, and hence
the SVM is not able to overfit to them. We then exchange the roles of training
and validation, and repeat the whole process until convergence. Figure 3 shows
the iterations of our algorithm for the three initial patch clusters (showing top
5 patches in each cluster). Note how the consistency of the clusters improves
significantly after each iteration. Note also that the clusters can “move around”
in x, y and scale space to latch onto the more discriminative parts of the visual
space (see the circled train in the right-most column).

2.2 Approach Details

Initialization: The input to our discovery algorithm is a “discovery dataset” D
of unlabeled images as well as a much larger “natural world dataset” N (in this
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Algorithm 1 Discover Top n Discriminative Patches

Require: Discovery set D, Natural World set N
1: D ⇒ {D1, D2}; N ⇒ {N1, N2} . Divide D,N into equal sized disjoint sets
2: S ⇐ rand sample(D1) . Sample random patches from D1

3: K ⇐ kmeans(S) . Cluster patches using KMeans
4: while not converged() do
5: for all i such that size(K[i]) ≥ 3 do . Prune out small ones
6: Cnew[i]⇐ svm train(K[i], N1) . Train classifier for each cluster
7: Knew[i]⇐ detect top(C[i], D2,m) . Find top m new members in other set
8: end for
9: K ⇐ Knew; C ⇐ Cnew

10: swap(D1, D2); swap(N1, N2) . Swap the two sets
11: end while
12: A[i]⇐ purity(K[i]) + λ× discriminativeness(K[i]) ∀ i . Compute scores
13: return select top(C,A, n) . Sort according to scores and select top n patches

paper we used 6,000 images randomly sampled from Flickr.com). First, we divide
both D and N into two equal, non-overlapping subsets (D1, N1 and D2, N2)
for cross-validation. For all images in D1, we compute HOG descriptors [13]
at multiple resolutions (at 7 different scales). To initialize our algorithm, we
randomly sample S patches from D1 (about 150 per image), disallowing highly
overlapping patches or patches with no gradient energy (e.g. sky patches) and
then run standard k-means clustering in HOG space. Since we do not trust
k-means to generalize well, we set k quite high (k = S/4) producing tens of
thousands of clusters, most with very few members. We remove clusters with
less than 3 patches (eliminating 66% of the clusters), ending up with about 6
patches per image still active.

Iterative Algorithm: Given an initial set of clusters K, we train a linear
SVM classifier [13] for each cluster, using patches within the cluster as positive
examples and all patches of N1 as negative examples (iterative hard mining is
used to handle the complexity). If D1 ⊂ N1, we exclude near-duplicates from N1

by normalized cross-correlation > 0.4. The trained discriminative classifiers are
then run on the held-out validation set D2, and new clusters are formed from
the top m firings of each detector (we consider all SVM scores above −1 to be
firings). We limit the new clusters to only m = 5 members to keep cluster purity
high – using more produces much less homogeneous clusters. On the other hand,
if a cluster/detector fires less than 2 times on the validation set, this suggests
that it might not be very discriminative and is killed. The validation set now
becomes the training set and the procedure is repeated until convergence (i.e. the
top m patches in a cluster do not change). In practice, the algorithm converges
in 4-5 iterations. The full approach is summarized in Algorithm 1.

Parameters: The size of our HOG descriptor is 8x8 cells (with a stride of 8
pixels/cell), so the minimum possible patch is 80x80 pixels, while the maximum
could be as large as full image. We use a linear SVM (C=0.1), with 12 iterations
of hard negative mining. For more details, consult the source code on the website.
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Fig. 4. Visualizing images (left) in terms of their most discriminative patches (right).
The patch detectors were fired on a novel image and the high-scoring patch detections
were averaged together, weighted by their scores.

2.3 Ranking Discriminative Patches

Our algorithm produces a dictionary of a few thousand discriminative patches
of varying quality. Our next task is to rank them, to find a small number of the
most discriminative ones. Our criteria for ranking consists of two terms:
Purity: Ideally, a good cluster should have all its member patches come from
the same visual concept. However, measuring purity in an unsupervised setting
is impossible. Therefore, we approximate the purity of each cluster in terms of
the classifier confidence of the cluster members (assuming that cross-validation
removed overfitting). Thus, the purity score for a cluster is computed by summing
up the SVM detection scores of top r cluster members (where r > m to evaluate
the generalization of the cluster beyond the m training patches).
Discriminativeness: In an unsupervised setting, the only thing we can say
is that a highly discriminative patch should fire rarely in the natural world.
Therefore, we define discriminativeness of a patch as the ratio of the number
of firings on D to the number of firings on D ∪N (of course, we do not want
patches that never fire at all, but these would have already been removed in
cross-validation training).

All clusters are ranked using a linear combination of the above two scores.
Figure 2 shows a set of top-ranked discriminative patch clusters discovered with
our approach. Note how sometimes the patches correspond to object parts, such
as “horse legs” and “horse muzzle”, sometimes to whole objects, such as “plates”,
and sometimes they are just discriminative portions of an object, similar to pose-
lets (e.g., see the corner of trains). Also note that they exhibit surprisingly good
visual consistency for a fully unsupervised approach. The ability of discrimina-
tive patches to fire on visually similar image regions is further demonstrated in
Figure 4, where the patch detectors are applied to a novel image and high-scoring
detections are displayed with the average patch from that cluster. In a way, the
figure shows what our representation captures about the image.

3 Discovering “Doublets”

While our discriminative patch discovery approach is able to produce a number
of visually good, highly-ranked discriminative patches, some other potentially
promising ones do not make it to the top due to low purity. This happens when
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(a)$Clean$cluster$ (c)$Cleaned/up$(b)$Noisy$Cluster$

Fig. 5. Cluster clean-up using “doublets”. A visually non-homogeneous cluster (b) that
has learned more than one concept, when coupled into a doublet with a high quality
cluster (a), gets cleaned up (c).

Fig. 6. Examples of discovered discriminative “doublets” that were highly ranked.

a cluster converges to two or more “concepts” because the underlying classifier
is able to generalize to both concepts simultaneously (e.g., Figure 5b). However,
often the two concepts have different firing patterns with respect to some other
mid-level patch in the dictionary, e.g., motorcycle wheel in Figure 5a. Therefore,
we propose to employ second-order spatial co-occurrence relationships among our
discriminative patches as a way of “cleaning them up” (Figure 5c). Moreover,
discovering these second-order relationships can provide us with “doublets” [34]
(which could be further generalized to grouplets [22, 35]) that can themselves be
highly discriminative and useful as mid-level features in their own right.

To discover doublets, we start with a list of highly discriminative patches
that will serve as high-quality “roots”. For each root patch, we search over
all the other discovered discriminative patches (even poor-quality ones), and
record their relative spatial configuration in each image where they both fire. The
pairs that exhibit a highly spatially-correlated firing pattern become potential
doublets. We rank the doublets by applying them on the (unlabeled) validation
set. The doublets are ranked high if in images where both patches fire, their
relative spatial configuration is consistent with what was observed in the training
set. In Figure 6 we show some examples of highly discriminative doublets. Notice
that not only is the quality of discriminative patches good, but also the spatial
relationships within the doublet are intuitive.

4 Quantitative Evaluation

As with other unsupervised discovery approaches, evaluation is difficult. We have
shown a number of qualitative results (Figures 2, 6), and there are many more
on the website. For the first set of quantitative evaluations (as well as for all
the qualitative results except Figure 8), we have chosen a subset of of PASCAL
VOC 2007 [36] (1,500 images) as our discovery dataset. We picked PASCAL
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VOC because it is a well-known and difficult dataset, with rich visual diversity
and scene clutter. Moreover, it provides annotations for a number of object
classes which could be used to evaluate our unsupervised discovery. However,
since our discovered patches are not meant to correspond to semantic objects,
this evaluation metric should be taken with quite a few grains of salt.

One way to evaluate the quality of our discriminative patch clusters is by
using the standard unsupervised discovery measures of “purity” and “coverage”
(e.g., [31]). Purity is defined by what percentage of cluster members correspond
to the same visual entity. In our case, we will use PASCAL semantic category
annotations as a surrogate for visual similarity. For each of the top 1000 discov-
ered patches, we first assign it to one of the semantic categories using majority
membership. We then measure purity as percentage of patches assigned to the
same PASCAL semantic label. Coverage is defined as the number of images in
the dataset “covered” (fired on) by a given cluster.

Figure 7 reports the purity and coverage of our approach and a number
of baselines. For each one, the graphs show the cumulative purity/coverage as
number of clusters being considered is increased (the clusters are sorted in the
decreasing order of purity). We compare our approach with Visual Words [1] and
Russell et. al [24] baseline, plus a number of intermediate results of our method:
1) HOG K-Means (visual word analog for HOG features), 2) Initial Clustering
(SVMs trained on the K-Means clusters without discriminative re-clustering),
and 3) No Cross-Validation (iterative, discriminatively-trained clusters but with-
out cross-validation). In each case, the numbers indicate area-under-the-curve
(AUC) for each method. Overall, our approach demonstrates substantial gain
in purity without sacrificing much coverage as compared to the established ap-
proaches. Moreover, each step of our algorithm improves purity. Note in par-
ticular the substantial improvement afforded by the cross-validation training
procedure compared to standard training.

As we mentioned, however, the experiment above under-reports the purity
of our clusters, since semantic equivalence is not the same as visual similarity.
Therefore, we performed an informal perceptual experiment with human sub-
jects, measuring the visual purity of our clusters. We selected the top 30 clusters
from the dataset. For each cluster, we asked human labelers to mark which of
the cluster’s top ten firings on the validation set are visually consistent with the
cluster. Based on this measure, average visual purity for these clusters was 73%.

4.1 Supervised Image Classification

Unsupervised clustering approaches, such as visual words, have long been used
as features for supervised tasks, such as classification. In particular, bag of visual
words and spatial pyramids [2] are some of the most popular current methods
for image classification. Since our mid-level patches could be considered the
true visual words (as opposed to “visual letters”), it makes sense to see how
they would perform on a supervised classification task. We evaluate them in
two different settings: 1) unsupervised discovery, supervised classification, and
2) supervised discovery, supervised classification.
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Fig. 7. Quantitative comparison of discriminative patches compared to the baseline
approaches. Quality of clustering is evaluated in terms of the area under the curve for
cumulative purity and coverage.

GIST 29.7

Spatial Pyramid HOG (SPHOG)† 29.8

Spatial Pyramid SIFT (SP )† 34.4
ROI-GIST [5] 26.5
Scene DPM [4] 30.4
MM-Scene [37] 28.0
Object Bank [3] 37.6

Ours 38.1

Ours+GIST 44.0
Ours+SP 46.4
Ours+GIST + SP 47.5
Ours+DPM 42.4
Ours+GIST+DPM 46.9
Ours+SP+DPM 46.4

GIST+SP+DPM [4] 43.1*
Ours+GIST+SP+DPM 49.4

Table 1. Quantitative Evaluation: Average Classification on MIT Indoor-67 dataset.
*Current state-of-the-art. †Best performance from various vocabulary sizes.

Unsupervised discriminative patches
Using the discriminative patches discovered from the same PASCAL VOC dis-
covery dataset as before, we would like to see if they could make better visual
words for a supervised image classification task. Our baseline is the standard
spatial pyramid of visual words (using 1000 visual words) using their public
code [2]. For our approach, we construct spatial pyramid using top 1000 dis-
criminative patches. Classification was performed using a simple linear SVM
and performance was evaluated using Average Precision. Standard visual words
scored 0.54 AP, while using our discriminative patches, the score was 0.65 AP.
We further expanded our feature representation by adding the top 250-ranking
doublets as extra visual words, resulting in a slight improvement to 0.66 AP.

Supervised discriminative patches
We further want to evaluate the performance of our approach when it is allowed
to utilize more supervision for a fair comparison with several existing supervised
approaches. Instead of discovering the discriminative patches from a common
pool of all the images, we can also discover them on a per-category basis. In this
experiment, we perform supervised scene classification using the challenging MIT
Indoor-67 dataset [5], containing 67 scene categories. Using the provided scene
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Fig. 8. Top discriminative patches for a sampling of scenes in the MIT Indoor-67 Scene
dataset [5]. Note how these capture various visual aspects of a typical scene.

labels, we discover discriminative patches for each scene independently, while
treating all other images in the dataset as the “natural world”.

Figure 8 shows top few most discriminative patches discovered this way for a
number of categories from the dataset. It is interesting to see that the discrimina-
tive patches capture aspects of scenes that seem very intuitive to us. In particular
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the discriminative patches for the Church category capture the arches and the
benches; the ones for the Meeting Room capture the center table and the seats.
These discriminative patches are therefore capturing the essence of the scene in
terms of these highly consistent and repeating patterns and hence providing a
simple yet highly effective mid-level representation. Inspired by these results, we
have also applied a similar approach to discovering “What makes Paris look like
Paris” [38] using geographic labels as the weak supervisory signal.

To perform classification, top 210 discovered patches of each scene are ag-
gregated into a spatial pyramid using maxpooling over the discriminative patch
scores as in [3]. We again use a linear SVM in a one-vs-all classification. The
results are reported in Table 1. Comparison with HOG visual words (SPHOG)
shows the huge performance gain resulting from our algorithm when operating
in the same feature space. Further, our simple method by itself outperforms all
others that have been tested on this dataset [5, 4, 37, 3]. Moreover, combining our
method with the currently best-performing combination approach of [4] yields
49.4% performance which, to our knowledge, is the best on this dataset.
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