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Highly Scalable Appearance-Only SLAM –
FAB-MAP 2.0

Mark Cummins and Paul Newman, Oxford University Mobile Robotics Group

Abstract—We describe a new formulation of appearance-only
SLAM suitable for very large scale navigation. The system navi-
gates in the space of appearance, assigning each new observation
to either a new or previously visited location, without reference to
metric position. The system is demonstrated performing reliable
online appearance mapping and loop closure detection over a
1,000 km trajectory, with mean filter update times of 14 ms. The
1,000 km experiment is more than an order of magnitude larger
than any previously reported result. The scalability of the system
is achieved by defining a sparse approximation to the FAB-MAP
model suitable for implementation using an inverted index. Our
formulation of the problem is fully probabilistic and naturally
incorporates robustness against perceptual aliasing. The 1,000 km
data set comprising almost a terabyte of omni-directional and
stereo imagery is available for use, and we hope that it will serve
as a benchmark for future systems.

I. INTRODUCTION

This paper is concerned with the problem of appearance-
based place recognition at very large scale. We refer to the
problem as “appearance-only SLAM” because our aim is not
limited to localization. New observations can be determined to
originate from previously unseen locations. Thus the system
incrementally constructs a map, and so is effectively a SLAM
technique. However, instead of estimating the positions of
landmarks in metric coordinates, the system estimates their po-
sitions in an appearance space. Because distinctive places can
be recognised even after unknown vehicle motion, appearance-
only SLAM techniques provide a natural solution to the
problems of loop-closure detection, multi-session mapping and
kidnapped robot problems. The approach is thus complemen-
tary to metric SLAM methods that are typically challenged by
these scenarios.

We have addressed these issues previously in [1], [2]. This
paper advances the state of the art by describing a new formu-
lation of the approach which extends the applicable scale of the
techniques by at least two orders of magnitude. We validate the
work on a 1,000 km data set; the largest experiment conducted
with systems of this kind by a considerable margin. The data
set, including omni-directional imagery, 20Hz stereo imagery
and 5Hz GPS, is available for use by other researchers and is
intended to serve as a benchmark for future systems.

II. RELATED WORK

The foundations of appearance-based navigation have a long
history within robotics, however there have been a number
of impressive technical advances quite recently. For example,
in the largest appearance-based navigation experiment we are
aware of [3], a set of biologically inspired approaches is em-
ployed. The system achieved successful loop closure detection

Figure 1: Segments of the 1,000km evaluation trajectory
(showing ground truth positions).

and mapping in a collection of more than 12,000 images from
a 66 km trajectory, with processing time of less than 100 ms
per image. The appearance-recognition component of the
system is based on direct template matching, so scales linearly
with the size of the environment. Operating at a similar scale,
Bosse and Zlot describe a place recognition system based on
distinctive keypoints extracted from 2D lidar data [4], and
demonstrate good precision-recall performance over an 18 km
suburban data set. Related results, though based on a less
scalable correlation-based submap matching method, were also
described in [5]. Olson described an approach to increasing the
robustness of general loop closure detection systems by using
both appearance and relative metric information to select a
single consistent set of loop closures from a larger number
of candidates [6]. The method was evaluated over several
kilometers of urban data and shown to recover high-precision
loop closures even with the use of artificially poor image
features.

Other appearance-based navigation methods we are aware
of have generally been applied only at a more modest scale.
Many systems have now been demonstrated operating at scales
around a kilometer [7], [8], [9], [10]. Indeed, place recognition
systems very similar in character to the one described here
have become an important component even of single-camera
SLAM systems designed for small-scale applications [11].

Considerable relevant work also exists on the more re-
stricted problem of global localization. For example, Schindler
et al. describe a city-scale location recognition system [12]
based on the vocabulary tree approach of [13]. The system
was demonstrated on a 30,000 image data set from 20 km of
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urban streets, with retrieval times below 200 ms. Also of direct
relevance is the research on content-based image retrieval
systems in the computer vision community, where systems
have been described that deal with more than a million images
[14], [15], [13] . However, the problem of retrieval from a fixed
index is considerably easier than the full loop-closure problem,
because it is possible to tune the system directly on the images
to be recognised, and the difficult issue of new place detection
does not arise. We believe the results presented in this paper
represent the largest scale system that fully addresses these
issues of incrementality and perceptual aliasing.

III. SYSTEM DESCRIPTION

A. Probabilistic Model

The probabilistic model employed in this paper builds
directly on the scheme outlined in [1]. For completeness, we
recap it briefly here.

The basic data representation used is the bag-of-words
approach developed in the computer vision community [16].
Features are detected in raw sensory data, and these features
are then quantized with respect to a vocabulary, yielding visual
words. The vocabulary is learned by clustering all feature
vectors from a set of training data. The Voronoi regions of
the cluster centres then define the set of feature vectors that
correspond to a particular visual word. The continuous space
of feature vectors is thus mapped into the discrete space of
visual words, which enables the use of efficient inference
and retrieval techniques. In this paper, the raw sensor data of
interest is imagery, processed with the SURF feature detector
[17], though in principle the approach is applicable to any
sensor or combination of sensors, and we have explored multi-
sensory applications elsewhere [18].

FAB-MAP, our appearance-only SLAM system, defines a
probabilistic model over the bag-of-words representation. An
observation of local scene appearance captured at time k is
denoted Zk =

{
z1, . . . , z|v|

}
, where |v| is the number of words

in the visual vocabulary. The binary variable zi, which we refer
to as an observation component, takes value 1 when the ith

word of the vocabulary is present in the observation. Zk is
used to denote the set of all observations up to time k.

At time k, our map of the environment is a collection of
nk discrete and disjoint locations Lk = {L1, . . . , Lnk

}. Each
location has an associated appearance model, given by the set{

p(e1 = 1|Li), . . . , p(e|v| = 1|Li)
}

(1)

The variable ei models feature existence, as distinct from zi

which models feature observation. A detector model relates
existence ei to detection zi. The detector model captures the
rate of false positive and false negative word detections, and
is specified by

D :
{

p(zi = 1|ei = 0), false positive probability.
p(zi = 0|ei = 1), false negative probability.

(2)
A further salient aspect of the data is that visual words do
not occur independently – indeed, word occurrence tends to
be highly correlated. For example, words associated with car
wheels and car doors are likely to be observed simultaneously.

Figure 2: Graphical model of the system. Locations L independently
generate existence variables e. Observed variables zi are conditioned
on existence variables ei via the detector model, and on each other
via the Chow Liu tree.

We capture these dependencies by learning a tree-structured
Bayesian network using the Chow Liu algorithm [19], which
yields the optimal approximation to the joint distribution
over word occurrence within the space of tree-structured
networks. Importantly, tree-structured networks also permit
efficient learning and inference even for very large visual
vocabulary sizes. The graphical model of the system is shown
in Figure 2.

Given our probabilistic appearance model, localization and
mapping can be cast as a recursive Bayes estimation problem,
closely analogous to metric SLAM. A pdf over location given
the set of observations up to time k is given by:

p(Li|Zk) =
p(Zk|Li,Zk−1)p(Li|Zk−1)

p(Zk|Zk−1)
(3)

Here p(Li|Zk−1) is our prior belief about our loca-
tion, p(Zk|Li,Zk−1) is the observation likelihood, and
p(Zk|Zk−1) is a normalizing term. We briefly discuss the
evaluation of each of these terms below. Full details can be
found in [1].

Observation Likelihood: To evaluate the observation likeli-
hood, we assume independence between the current and past
observations conditioned on the location, and make use the
Chow Liu model of the joint distribution, yielding:

p(Zk|Li)=p(zr|Li)
|v|∏

q=2

p(zq|zpq
, Li) (4)

where zr is the root of the Chow Liu tree and zpq
is the parent

of zq in the tree. Each term in the product can be further
expanded as:

p(zq|zpq
, Li) =

∑
seq∈{0,1}

p(zq|eq = seq
, zpq

)p(eq = seq
|Li)

(5)
which can be evaluated explicitly.

Location Prior: The location prior p(Li|Zk−1) is obtained
by transforming the previous position estimate via a simple
motion model. The model assumes that if the vehicle is at
location i at time k − 1, it is likely to be at one of the
topologically adjacent locations at time k.
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Normalization: In contrast to a localization system, a
SLAM system requires an explicit evaluation of the normal-
izing term p(Zk|Zk−1) , which incorporates the probability
that the current observation comes from a previously unknown
location. If we divide the world into the set of mapped
locations M and the unmapped locations M , then

p(Zk|Zk−1) =
∑

m∈M

p(Zk|Lm)p(Lm|Zk−1) (6)

+
∑
u∈M

p(Zk|Lu)p(Lu|Zk−1) (7)

The second summation cannot be evaluated directly because it
involves all possible unknown locations. However, if we have
a large set of randomly collected location models Lu, (readily
available from previous runs of the robot or other suitable data
sources such as, for our application, Google Street View), we
can approximate the summation by Monte Carlo sampling.
Assuming a uniform prior over the samples, this yields:

p(Zk|Zk−1) ≈
∑

m∈M

p(Zk|Lm)p(Lm|Zk−1) (8)

+p(Lnew|Zk−1)
ns∑

u=1

p(Zk|Lu)
ns

(9)

where ns is the number of samples used, and p(Lnew|Zk−1)
is our prior probability of being at a new location.

Data Association: Once the pdf over locations is computed,
a data association decision is made. The observation Zk

is used either to initialize a new location, or update the
appearance model of an existing location. Each component
of the appearance model is updated according to:

p(ei = 1|Lj ,Zk) =
p(Zk|ei = 1, Lj)p(ei = 1|Lj ,Zk−1)

p(Zk|Lj)
(10)

In the case of new locations, the values p(ei = 1|L) are
initialized to the marginal probability p(ei = 1) derived from
the training data, and then the update is applied.

B. Efficient Large Scale Implementation - FAB-MAP 2.0

The probabilistic model defined above has been used pre-
viously in [20], [1], and an approximate inference procedure
for it was described in [2]. A key contribution of this paper is
to describe a modified version of the model which extends its
applicability by more than two orders of magnitude in scale.

For a highly scalable system, we turn to an inverted index
retrieval architecture. In computational terms, the inverted
index approach essentially scales indefinitely [21]. However,
FAB-MAP is not directly implementable using an inverted
index structure, because the appearance likelihood p(Zk|Li)
requires evaluation of Equation 4,

∏|v|
q=2 p(zq|zpq

, Li). The
computation pattern is illustrated in Figure 3. Every obser-
vation component contributes to the appearance likelihood,
including negative observations – those where zq = 0, words
not detected in the current image. As such, it does not have
the sparsity structure that enables inverted index approaches to

scale. Perhaps surprisingly, we have found that simply ignoring
the negative observations has a detrimental impact on place
recognition performance. Thus we seek a formulation that will
enable efficient implementation, but preserve the information
inherent in the negative observations.

To enable an inverted index implementation, we modify
the probabilistic model in two ways. Firstly, we place some
restrictions on the probabilities in the location models. Re-
calling Equation 1, locations models are parametrized as{
p(e1 = 1|Lj), . . . , p(e|v| = 1|Lj)

}
, that is, by a set of beliefs

about the existence of features that give rise to observations
of the words in the vocabulary. Let p(ei|Lj)|{0} denote one
of these beliefs, where the subscript {0} indicates the history
of observations that have been associated with the location.
Thus {0} denotes one associated observation with zi = 0, and
{0, 0, 1} denotes three associated observations, with zi = 1 in
one of those observations. Further, let p(ei|Lj)|0 indicate that
in all observations associated with the location, zi =0.

In the general probabilistic model described in Section
III-A, p(ei|Lj)|0 can take on a range of values - for ex-
ample, p(ei|Lj)|{0} 6= p(ei|Lj)|{0,0}, as the belief in the
non-existence of the feature increases as more supporting
observations become available. In FAB-MAP 2.0, the model
is restricted so that p(ei|Lj)|0 must take the same value
for all locations; it is clamped at the value p(ei|Lj)|{0}.
This restriction enables an efficient likelihood calculation,
illustrated in Figure 4.

Consider the calculation of one component of the observa-
tion likelihood, as per Equation 5, across all locations in the
map. In the unrestricted model, this will involve a computation
for each location, as illustrated in Figure 4(a). In the restricted
model, Figure 4(b), the value of the observation likelihood
in all locations where p(ei|Lj)|0 is the same. Working with
log-likelihoods, and given that the distribution will later be
normalized, the calculation can be reorganized so that it has
a sparse structure, Figure 4(c), which allows for efficient
implementation using an inverted index.

We emphasize the fact that this restriction placed on the
model is rather slight, and most of the power of the original
model is retained. During the exploration phase, when only
one observation is associated with each location, the two
schemes are identical1. The restricted terms p(ei|Lj)|0 can
(and do) vary with i (word ID), and also with time. Treatment
of correlations between words, of perceptual aliasing, and of
the detector model remains unaffected.

The second change we make to the model concerns data
association. Previously, data association was carried out via
Equation 10, updating the beliefs p(e|L). Effectively this
amounts to capturing the average appearance of a location.
For example, if a location has a multi-modal distribution over
word occurrence, such as a door that may be either open or
shut, then the location appearance model will approach the
mean of this distribution. In FAB-MAP 1.0, when computation
increased swiftly with the number of appearance models to be
evaluated, this was a reasonable design choice. For FAB-MAP
2.0 we switch to representing locations in a sample-based

1Assuming the detector model does not change with time.
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(a) FAB-MAP 1.0 (b) FAB-MAP 1.0
with Bennett Bound

(c) FAB-MAP 2.0

Figure 3: Illustration of the amount of computation performed by the different models. The shaded region of each block represents the
appearance likelihood terms p(zq|zpq , Li) which must be evaluated. In (a), FAB-MAP 1.0 [1], the likelihood must be computed for all words
in all locations in the map. Using the Bennett bound approximate inference procedure defined in [2], unlikely locations are discarded during
the computation, yielding the evaluation pattern shown in (b). The restrictions imposed in FAB-MAP 2.0 allow a fully sparse evaluation, (c).

(a) Unrestricted Model

(b) Restricted Model

(c) Sparse likelihood update in the restricted model.

Figure 4: Illustration of calculation of one term of Equation 5,
the observation likelihood, for a map with four locations. In (a),
the model is unrestricted, and the observation likelihood can take
a different value for each location. In (b), the restricted model, the
likelihood in all locations where the currently considered word was
not previously observed is constrained to take the same value. The
calculation can now be organized so that it has a sparse structure,
(c).

fashion, which better handles these multi-modal appearance
effects. Locations now consist of a set of appearance models
as defined in Equation 1, with each new observation associated
with the location defining a new such model. This change is
necessary because of the restrictions placed on word existence
probabilities, but is also largely beneficial. While it means that
inference time now increases with every observation collected,
the system is sufficiently scalable that this is not of immediate
relevance, and the greater ability to deal with variable location
appearance is preferred.

Algorithm 1 gives pseudo-code for the calculation. The
calculation is divided into two parts, A and B. Part A deals
with the positive observations, those for which zi = 1, while
Part B deals with negative observations for which zi = 0. The
complexity of Part B is O(#vocab), whereas Part A depends
only on the number of words present in a given observation,
which is empirically a small constant largely independent of
vocabulary size. The straightforward implementation (combin-
ing A and B) is in fact fast enough for use, however it can
be improved by a caching scheme which eliminates Part B by
pre-computing negative votes at the time when the location is
added to the map. The negative votes are then adjusted based

Algorithm 1 Log-likelihood update using the inverted index.

Update, Part A (Positive Observations):
for zi in Z, such that zi = 1 do:

//Get all locations where word i
//was observed
locations = inverted_index[zi]
for Lj in locations do:

//Update the loglikelihood
//of each of these locations
loglikelihood[Lj] += log( p(zi|zpi

,Lj)

p(zi|zpi
,L)|0

)

Update, Part B (Negative Observations):
for zi in Z, such that zi = 0 do:

locations = inverted_index[zi]
for Lj in locations do:

loglikelihood[Lj] += log( p(zi|zpi
,Lj)

p(zi|zpi
,L)|0

)

on the current observation, but do not need to be recomputed
entirely. This yields a scheme where the overall complexity is
independent of the size of the vocabulary.

C. Geometric Verification

While a navigation system based entirely on the bag-of-
words likelihood is possible, we have found in common with
others [14] that a geometric post-verification stage, which
checks that the matched images satisfy epipolar geometry
constraints, considerably improves performance. The impact is
particularly noticeable as data set size increases - it is helpful
on the 70 km data set but almost essential on the 1,000 km set.

We apply the geometric verification to the 100 most likely
locations (those which maximize p(Zk|Li,Zk−1)p(Li|Zk−1))
and to the 100 most likely samples (the location models
used to evaluate the normalizing term p(Zk|Zk−1)). For each
of these locations we check geometric consistency with the
current observation using RANSAC. Candidate interest point
matches are derived from the bag-of-words assignment already
computed. Because our aim is only to verify approximate
geometric consistency rather than recover exact pose to pose
transformations, we assume that the transformation between
poses is a pure rotation about the vertical axis. A single
point correspondence then defines a transformation, leading to
a very rapid verification stage. We accommodate translation
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between poses by allowing large inlier regions for point
correspondences. We have found this simplified model to be
effective for increasing navigation performance, while keeping
computation requirements to a minimum. Having recovered
a set of inliers using RANSAC we recompute the location’s
likelihood by setting zi = 0 for all those visual words not
part of the inlier set. A likelihood of zero is assigned to
all locations not subject to geometric verification. For the
1,000 km experiment, the maximum time taken to rerank all
200 locations was 145 ms, and mean time was 10 ms.

D. Visual Vocabulary Learning

1) Clustering: A number of challenges arise in learning vi-
sual vocabularies at large scale. The number of SURF features
extracted from training images is typically very large; our rela-
tively small training set of 1,921 images produces 2.5 million
128-dimensional SURF descriptors occupying 3.2 GB. Even
the most scalable clustering algorithms such as k-means are
too slow to be practical. Instead we apply the fast approximate
k-means algorithm discussed in [14], where, at the beginning
of each k-means iteration, a randomized forest of kd-trees
[22], [23] is constructed over the cluster centres, which is
then used for fast (approximate) distance calculations. This
procedure has been shown to outperform alternatives such
as hierarchical k-means [13] in terms of visual vocabulary
retrieval performance.

As k-means clustering converges only to a local minima
of its error metric, the quality of the visual vocabulary is
sensitive to the initial cluster locations supplied to k-means.
Nevertheless, random initial locations are commonly used. We
have found that this leads to poor visual vocabularies, because
there are very large density variations in the feature space. In
these conditions, randomly chosen cluster centres tend to lie
largely within the densest region of the feature space, and
the final clustering over-segments the dense region, with poor
clustering elsewhere. For example, in our vehicle-collected
data, huge numbers of very similar features are generated
by road markings, whereas rarer objects (more useful for
place recognition) may only have a few instances in the
training set. Randomly initialized k-means yields a visual
vocabulary where a large fraction of the words correspond
to road markings, with tiny variations between words.

To avoid these effects, we choose the initial cluster centres
for k-means using a fixed-radius incremental pre-clustering,
where the data points are inspected sequentially, and a new
cluster centre is initialized for every data point that lies further
than a fixed threshold from all existing clusters. This is similar
to the furthest-first initialization technique [24], but more
computationally tractable for large data sets. We also modify
k-means by adding a cluster merging heuristic. After each k-
means iteration, if any two cluster centres are closer than a
fixed threshold, one of the two cluster centres is reinitialized
to a random location.

2) Chow Liu Tree Learning: Chow Liu tree learning is
also challenging at large scale. The standard algorithm for
learning the Chow Liu tree involves computing a (temporary)
mutual information graph of size |v|2, so the computation
time is quadratic in the vocabulary size. For the 100,000

word vocabulary discussed in Section V, to relevant graph
would require 80 GB of storage. Happily, there is an efficient
algorithm for learning Chow Liu trees when the data of interest
is sparse [25]. Meilă’s algorithm has complexity O(s2 log s),
where s is a sparsity measure, equal to the maximum number
of visual words present in any training image. Visual word
data is typically highly sparse, with only a small fraction of the
vocabulary present in any given image. This allows efficient
Chow Liu tree learning even for large vocabulary sizes. For
example, the tree of the 100,000 word vocabulary used in
Section V was learned in 31 minutes on a 3GHZ Pentium IV.

For both the clustering and Chow Liu learning, we use
external memory techniques to deal with the large quantities
of data involved [26].

IV. DATA SET

For a truly large scale evaluation of the system, the experi-
ments in this paper make use of a 1,000 km data set. The data
was collected by a car-mounted sensor array, and consists of
omni-directional imagery from a Point Grey Ladybug2, 20Hz
stereo imagery from a Point Grey Bumblebee2, and 5Hz GPS
data. Omni-directional image capture was triggered every 4
meters on the basis of GPS.

The data set was collected over six days in December, with
a total length of slightly less than 21 hours, and includes
a mixture of urban, rural and motorway environments. The
total set comprises 803 GB of imagery (including stereo)
and 177 GB of extracted features. There are 103,256 omni-
directional images, with a median distance of 8.7 m between
image captures – this is larger than the targeted 4 m because
the Ladybug2 could not provide the necessary frame rate
during faster portions of the route. The median time between
image captures is 0.48 seconds, which provides our benchmark
for real-time image retrieval performance.

Two supplemental data sets were also collected. A set of
1,921 omni-directional images collected 30 m apart was used
to train the visual vocabulary and Chow Liu tree, and also
served as the sampling set for the Monte Carlo integration
required in Equation 8. The area where this training set was
collected did not overlap with the data sets used to test the
system. A second smaller data set of 70 km was also collected
in August, four months prior to the main 1,000 km dataset.
This serves as a smaller-scale test and can also be used for
testing cross-season matching performance. The data sets are
summarized in Table I.

The 1,000 km data set, collected in mid-December, provides
an extremely challenging benchmark for place recognition
systems. Due to the time of year, the sun was low on the
horizon, so that scenes typically have high dynamic range
and quickly varying lighting conditions. We developed custom
auto-exposure controllers for the cameras that largely ensured
good image quality, however, there is unavoidable informa-
tion loss in such conditions. Additionally, large sections of
the route feature highly self-similar motorway environments,
which provide a challenging test of the system’s ability to deal
with perceptual aliasing. The smaller data set collected during

2Not used in these results.
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August features more benign imaging conditions and will
demonstrate the performance that can be typically expected
from the system.

Finally, collecting a data set of this magnitude highlights
some practical challenges for any truly robust field robotics
deployment. We encountered significant difficulty in keeping
the camera lenses clean – in winter from accumulating mois-
ture and particulate matter, in summer from fly impacts. For
this experiment we periodically cleaned the cameras manually
– a more robust solution seems a worthy research topic.

All data sets are available to researchers upon request.

V. RESULTS

The system was tested on the two datasets, respectively
70 km and 1,000 km. As input the system, we used 128D
non-rotationally invariant SURF descriptors. The features were
quantized to visual words using a randomized forest of eight
kd-trees. The visual vocabulary was trained using the system
described in Section III-D and the 1,921 image training set
described in Section IV. In order to ensure an unbiased
Chow Liu tree, the images in the training set were collected
30m apart, so that as far as possible they do not overlap in
viewpoint, and thus approximate independent samples from
the distribution over images.

We investigate two different visual vocabularies, of 10,000
and 100,000 words respectively. The detector model (Equation
2), the main user-configurable parameter of our system, was
determined by a grid search to maximize average precision on
a set of training loop closures. The detector model primarily
captures the effects of variability in SURF interest point
detection and feature quantization error. For the 10,000 word
vocabulary we set p(z = 1|e = 1) = 0.39 and p(z = 1|e =
0) = 0.005. For the 100,000 word vocabulary, the values were
p(z = 1|e = 1) = 0.2 and p(z = 1|e = 0) = 0.005. We also
investigate the importance of learning the Chow Liu tree by
comparing against a Naive Bayes formulation which neglects
the correlations between words. We refer to these different
system configurations as “100k, CL” and “100k, NB”, and
similarly for the 10k word vocabulary.

Performance of the system was measured against ground
truth loop closures determined from the GPS data. GPS errors
and dropouts were corrected manually. Any pair of matched
images that were separated by less than 40 m on the basis
of GPS was accepted as a correct correspondence. Note that
while 40m may seem too distant for a correct correspondence,
on divided highways the minimum distance between correct
loop closing poses was sometimes as large as this. Almost all
loop closures detected by the system are well below the 40 m
limit – 89% were separated by less than 5m, and 98% by less
than 10 m.

We report precision-recall metrics for the system. Precision
is defined as the ratio of true positive loop closure detections to
total detections. Recall is the ratio of true positive loop closure
detections to the number of ground truth loop closures. Note
that images for which no loop closure exists cannot contribute
to the true positive rate, however they can generate false
positives. Likewise true loop closures which are incorrectly
assigned to a “new place” depress recall but do not impact

our precision metric. These metrics provide a good indication
of how useful the system would be for loop closure detection
as part of a metric SLAM system – recall at 100% precision
indicates the percentage of loop closures that can be detected
without any false positives that would cause filter divergence.
Note that a typical loop closure consists of a sequence of
several images, so even a recall rate of 20% or 30% is
sufficient to detect most loop closure events, provided the
detections have uniform spatial distribution.

Overall, we found the system to have excellent performance
over the 70 km dataset, while the 1,000 km data set was more
challenging. Precision recall curves for the two dataset are
shown in Figures 5 and 6, and given numerically in Table
II. Loop closing performance is also visualized in the maps
shown in Figures 7 and 8. Loop closures are often detected
even in the presence of large changes in appearance, a typical
example is shown in Figure 10.

The performance contributions of the motion model and
the geometric verification step are analysed in Figure 5. The
geometric check in particular is useful in maintaining recall
at higher levels of precision. The motion model is largely
unnecessary on the 70km set, however it makes a more
noticeable contribution on the 1,000 km set. The effect of
vocabulary size and the Chow Liu tree is shown in Figure
6. Performance increases strongly with vocabulary size. The
Chow Liu tree also boosts performance on all datasets and at
all vocabulary sizes. The effect is weaker at the very highest
levels of precision. The reason for this effect is that while
the Chow Liu tree will on average improve the likelihood
estimates assigned, some individual likelihoods may get worse.
The recall at 100% precision is determined by the likelihood
assigned to the very last false positive to be eliminated. While
on average we expect the Chow Liu tree to improve this
likelihood estimate, the opposite may be observed in some
fraction of data sets. Below 100% precision the results are
sensitive to the likelihood estimates for a larger number of
false positives, and so the improvement due to the Chow Liu
tree is more robustly observable.

The recall rate for the 70 km dataset is 48.4% at 100%
precision. The spatial distribution of these loop closures is
uniform over the trajectory – thus essentially every pose will
be either detected as a loop closure, or a lie within a few
meters of a loop closure. There are two short segments of
the trajectory where this is not the case, one in a forest
with poor lighting conditions, another in open fields with few
visual landmarks. For practical purposes this dataset can be
considered “solved”. By contrast, the recall for the 1,000 km
data set at 100% precision is only 3.1%. However, this figure
requires careful interpretation – the data set contains hundreds
of kilometers of highways, where the environment contains
essentially no distinctive visual content. It is perhaps not
reasonable to expect appearance-based loop closure detection
in such conditions. To examine performance more closely,
we segmented the data set into portions where the vehicle
is travelling below 50 km/h (urban), and others (highways,
etc). In urban areas (31% of the dataset) the recall is 6.5%
at 100% precision, rising to 18.5% at 99% precision. The
sharp drop in recall between 99% and 100% precision is



7

Table I: Data set summary.

Distance No. of Images Median distance between images Size of Extracted Features Environment
1,000 km 103,256 8.7 m 177 GB Highways, Urban, Rural

70 km 9,575 6.7 m 16 GB Urban, Rural

Figure 5: Precision-recall curves for the 70 km dataset, showing the
effect of the different system components. Note the scaling on the
axes. “Baseline” refers to the system without the geometric check and
with a uniform position prior at each timestep. On this dataset the
combination of motion model and geometric check is only slightly
better than geometric check alone. The benefit is more significant for
the 1,000 km dataset.

due to the fact that the highest confidence false positives are
caused by particularly challenging cases of perceptual aliasing
such as encountering distinctive brand logos multiple times in
different locations. Given that the loop closures have an even
distribution over the trajectory (Figure 7), even a recall rate of
6.5% is probably sufficient to support a good metric SLAM
system.

Timing performance is presented in Figure 9. The time
quoted is for inference and geometric verification, as measured
on a single core of a 2.40 GHZ Intel Core 2 processor. SURF
feature extraction and quantization adds an overhead of 484 ms
on average. Recent GPU-based implementations can largely
eliminate this overhead [27]. However, even including feature
detection overhead, our real time requirement of 480 ms could
be achieved by simply spreading the processing over two
cores.

In comparison to prior work [1], the new system’s inference
times are on average 4,400 times faster, with comparable
precision-recall performance. Equally important, the sparse
representation means that location models now require only
O(1) memory, as opposed to O(#vocabulary). For the 100k
vocabulary, a typical sparse location model requires 4 KB of
memory as opposed to 400 KB previously. This enables the
use of large vocabularies which improve performance, and
is crucial for large scale operation because the size of the
mappable area is effectively limited by available RAM.

VI. CONCLUSIONS

This paper has outlined a new, highly scalable architecture
for appearance-only SLAM. The framework is fully proba-
bilistic, and deals with challenging issues such as perceptual
aliasing and new place detection. We have demonstrated the
system on two extremely extensive data sets, of 70 km and
1,000 km. Both experiments are larger than any existing result
we are aware of. Our approach shows very strong performance

Figure 6: Precision-recall curves for the 1,000 km data set, showing
the effect of the vocabulary size and the Chow Liu tree on perfor-
mance. Note the scaling on the axes. Performance increases strongly
with vocabulary size. The Chow Liu tree also increases performance,
for all vocabulary sizes. The 70 km set shows the same effects.

Dataset 70 km 1,000 km 1,000 km Urban
Precision 100% 99% 100% 99% 90% 100% 99%

Recall
100k CL 48.4 73.2 3.1 8.3 14.3 6.5 18.5
100k NB 49.1 70.0 3.7 7.9 13.5 7.5 17.9
10k CL 37.0 52.3 - 2.7 4.7 - 5.2
10k NB 30.1 51.5 - - 4.4 - -

Table II: Recall figures at specified precision for varying vocabulary
size and with/without the Chow Liu tree. Recall improves with
increasing vocabulary size at all levels of precision. The Chow Liu
tree also improves recall in all cases with the exception of the 100k
vocabulary at 100% precision. See text for discussion.

on the 70 km experiment. The 1,000 km experiment is more
challenging, and we do not consider it solved, nevertheless
system performance is already sufficient to provide a useful
competency for an autonomous vehicle operating at this scale.
Our data sets are available to the research community, and we
hope that they will serve as a benchmark for future systems.
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