Practical Course WS12/13

Introduction to Monte Carlo Localization

Cyrill Stachniss and Luciano Spinello

State Estimation

- Estimate the state x of a system given observations z and controls \boldsymbol{u}
- Goal:

 $p(x \mid z, u)$

Bayes Filter

- General framework for state estimation
- Prediction step based on controls
- Correction step based on measurements
- Recursive structure:

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

= $\eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1}$

Bayes Filter Derivation

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \\ &= p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ bel(x_{t-1}) \ dx_{t-1} \end{aligned}$$

4

Prediction and Correction Step

- Bayes filter is often formulated as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

 $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

sensor or observation model

Different Realizations

- The Bayes filter is a **framework** for recursive state estimation
- There are different realizations

Different properties

- Linear vs. non-linear models for motion and observation models
- Gaussian distributions only?
- Parametric vs. non-parametric filters

• ...

Motion Model $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

Robot Motion Models

- Robot motion is inherently uncertain
- How can we model this uncertainty?

Probabilistic Motion Models

 Specifies a posterior probability that action u carries the robot from x to x'.

$$p(x_t \mid u_t, x_{t-1})$$

Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based
- Odometry-based models for systems that are equipped with wheel encoders
- Velocity-based when no wheel encoders are available

Odometry Model

• Robot moves from $(\bar{x}, \bar{y}, \bar{\theta})$ to $(\bar{x}', \bar{y}', \bar{\theta}')$

• Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$

Probability Distribution

- Noise in odometry $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$
- Example: Gaussian noise

 $u \sim \mathcal{N}(0, \Sigma)$

Examples (Odometry-Based)

Sensor Model $bel(x_t) = \eta p(z_t \mid x_t) bel(x_{t-1})$

Model for Laser Scanners

Scan z consists of K measurements.

$$z_t = \{z_t^1, \dots, z_t^k\}$$

 Individual measurements are independent given the robot position

$$p(z_t \mid x_t, m) = \prod_{i=1}^k p(z_t^i \mid x_t, m)$$

Beam-Endpoint Model

Beam-Endpoint Model

map

likelihood field

Ray-cast Model

- Ray-cast model considers the first obstacle long the line of sight
- Mixture of four models

Particle Filter

$$bel(x_t) = \eta p(z_t | x_t) \int_{x_{t-1}} p(x_t | x_{t-1}, u_t) bel(x_{t-1}) dx_{t-1}$$

- Realization of the Bayes filter
- Non-parametric approach
- Models arbitrary distributions

Motivation

 Goal: approach for dealing with arbitrary distributions

Key Idea: Samples

 Use multiple samples to represent arbitrary distributions

Particle Set

Set of weighted samples

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w^{[i]} \delta_{x^{[i]}}(x)$$

Particles for Approximation

Particles for function approximation

 The more particles fall into an interval, the higher its probability density

Particle Filter

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by samples
- Prediction: propagate the samples given the motion model (proposal)
- Correction: weighting by considering the observation

The more samples we use, the better is the estimate!

Monte Carlo Localization

- Each particle is a pose hypothesis
- Proposal is the motion model

$$x_t^{[i]} \sim p(x_t \mid x_{t-1}, u_t)$$

Correction via the observation model

$$w_t^{[i]} \propto p(z_t \mid x_t, m)$$

 Resampling: "Replace unlikely samples by more likely ones"

Particle Filter for Localization

Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$): 1: $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 2: for m = 1 to M do 3: sample $x_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$ 4: $w_t^{[m]} = p(z_t \mid x_t^{[m]})$ $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$ 5: 6: endfor 7: for m = 1 to M do draw i with probability $\propto w_t^{[i]}$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: 10: endfor 11: return \mathcal{X}_t

Application: Particle Filter for Localization (Known Map)

28

Resampling

- Survival of the fittest: "Replace unlikely samples by more likely ones"
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number of samples

Resampling

- Roulette wheel
- Binary search
- O(n log n)

- Stochastic universal sampling
- Low variance
- O(n)

Low Variance Resampling

Low_variance_resampling($\mathcal{X}_t, \mathcal{W}_t$): 1: $\bar{\mathcal{X}}_t = \emptyset$ 2: $r = rand(0; M^{-1})$ 3: $c = w_t^{[1]}$ 4: i = 15: for m = 1 to M do $U = r + (m - 1) \cdot M^{-1}$ 6: 7:while U > c8: i = i + 1 $c = c + w_t^{[i]}$ 9: 10: endwhile add $x_t^{[i]}$ to $\bar{\mathcal{X}}_t$ 11: 12:endfor return \mathcal{X}_t 13:

Summary – Particle Filters

- Particle filters are non-parametric, recursive Bayes filters
- Posterior is represented by a set of weighted samples
- Not limited to Gaussians
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Work well in low-dimensional spaces

Summary – PF Localization

- Particles are propagated according to the motion model
- They are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- MCL is the gold standard for mobile robot localization today

Literature

On Monte Carlo Localization

 Thrun et al. "Probabilistic Robotics", Chapter 8.3

On the particle filter

 Thrun et al. "Probabilistic Robotics", Chapter 3

On motion and observation models

 Thrun et al. "Probabilistic Robotics", Chapters 5 & 6

Key Questions

- What does our map look like?
- What kind of sensor do we use?
- How to obtain a sensor model?
- How to describe the motion?