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Topics of this Course

� Racing car control

� What is the current state of the car, i.e., what is 
its current position and velocity relative to the 
race track?

� What is the optimal control command given the 
current state of the car?

� How to deal with high speeds and drift?

� Trajectory optimization

� What is the optimal trajectory given the race 
track and its width?

� Real world racing with a R/C model car



Goal of this Course

� Hands-on development of a robotic planning 
and control system

� Deeper understanding of planning and 
control

� Practical programming experience

� Team work

� Experience in contributing to a software 
project



Project Structure

� Teams of three people

� Everyone has an own task/component to 
develop within the team

� Team members are supposed to help each 
other (tasks may not be equally difficult)

� Components interact via predefined 
interfaces



Requirements

� Programming skills are essential (C/C++)

� Ability to work in a team

� Knowledge of “Introduction to Mobile 
Robotics” is useful but not essential

� Important topics are
Robot control paradigms, wheeled locomotion, 
path planning and collision avoidance

� Development under Linux
(tested with Ubuntu 12.04)

� Use of versioning with Subversion



Versioning Tool: Subversion

� Extremely useful for cooperative 
development and version tracking

� Stores every change made to the code

� Allows to go back to any intermediate 
revision

� Supports to merge different versions

� Inherently multi-user

� In this course, Subversion has to be used

� See the website of this course for tutorials



Meetings

� Weekly meetings:
Tue 14h-16h (ct), building 101, room 01-
018

� Each group has to provide a short report 
presentation (3-7 min) at each meeting

� Each group has to write a brief, informal 
summary (to be stored in the SVN)

� Each group should present its current 
project plan and evaluate the own progress



Topics of this Course in more Detail

� Car racing as a control problem
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Modular Software Development

� Input/Output architecture

� Communication between 
modules through connection 
of Inputs to Outputs

� Optional Input for 
parameters

� Process function

� Processes available input data 
and generates output data

Controller

process()

Output
Control

Input
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Class Controller : public Module {

public:
Input<State> inState;
Output<Control> outControl;

void process();
};



Software Architecture

� Encapsulate functionality in modules
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Software Architecture

� Encapsulate functionality in modules
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Racing Car Control

� Assignment 1: Change the controller so that 
it runs the car in an endless loop

� Assignment 2: Improve the speed command 
values in the controller module.



Topics of this Course in more Detail

� Car racing as a planning problem



Team Setup

� Find your team mates

� Decide on the task assignment

� Get familiar with your task (read!)

� Define your own milestones

� Breakdown milestones into tasks



Framework Setup

� Website: http://ais.informatik.uni-freiburg.de/teaching/ws12/practicalA/

� Download the basic profile setup

� Create the ‘code’ folder in your home directory

� Checkout and compile the library fern
https://aissvn.informatik.uni-freiburg.de/svn/projects-fern

� Checkout and compile the robular framework
https://aissvn.informatik.uni-freiburg.de/svn/projects-robular/branches/practical

� Read the file README in the framework for details 
on compiling and running the code



Repository Setup

� Set up your own repository on
https://aissvn.informatik.uni-freiburg.de

� Copy the controller from the framework

� Create a CMake project

� Include the headers of the framework

� Link against the libraries of the framework



Contact

� Contact us whenever you have problems, 
questions, or ideas.

� Best is via E-Mail:
muellerj@informatik.uni-freiburg.de

� Office: Building 079, ground floor

� If you have serious problems, contact us as 
soon as possible (the other team members 
depend on you).


