
Wolfram Burgard

Jörg Müller

University of Freiburg, Germany

Practical Course WS 2012

Model Car Racing



Topics of this Course



Topics of this Course

� Racing car control

� What is the current state of the car, i.e., what is 
its current position and velocity relative to the 
race track?

� What is the optimal control command given the 
current state of the car?

� How to deal with high speeds and drift?

� Trajectory optimization

� What is the optimal trajectory given the race 
track and its width?

� Real world racing with a R/C model car



Goal of this Course

� Hands-on development of a robotic planning 
and control system

� Deeper understanding of planning and 
control

� Practical programming experience

� Team work

� Experience in contributing to a software 
project



Project Structure

� Teams of three people

� Everyone has an own task/component to 
develop within the team

� Team members are supposed to help each 
other (tasks may not be equally difficult)

� Components interact via predefined 
interfaces



Requirements

� Programming skills are essential (C/C++)

� Ability to work in a team

� Knowledge of “Introduction to Mobile 
Robotics” is useful but not essential

� Important topics are
Robot control paradigms, wheeled locomotion, 
path planning and collision avoidance

� Development under Linux
(tested with Ubuntu 12.04)

� Use of versioning with Subversion



Versioning Tool: Subversion

� Extremely useful for cooperative 
development and version tracking

� Stores every change made to the code

� Allows to go back to any intermediate 
revision

� Supports to merge different versions

� Inherently multi-user

� In this course, Subversion has to be used

� See the website of this course for tutorials



Meetings

� Weekly meetings:
Tue 14h-16h (ct), building 101, room 01-
018

� Each group has to provide a short report 
presentation (3-7 min) at each meeting

� Each group has to write a brief, informal 
summary (to be stored in the SVN)

� Each group should present its current 
project plan and evaluate the own progress



Topics of this Course in more Detail

� Car racing as a control problem

Controller

Racing car

Action
(acceleration,

steering)

State
(position,
velocity)

Desired
trajectory



Modular Software Development

� Input/Output architecture

� Communication between 
modules through connection 
of Inputs to Outputs

� Optional Input for 
parameters

� Process function

� Processes available input data 
and generates output data

Controller

process()

Output
Control

Input
State

Class Controller : public Module {

public:
Input<State> inState;
Output<Control> outControl;

void process();
};



Software Architecture

� Encapsulate functionality in modules

Controller

process()

Output
Control

Input
State

Viewer

process()

Input
State

Car

process()

Input
Control

MoCap

process()

Output
State



Software Architecture

� Encapsulate functionality in modules

Controller

process()

Output
Control

Input
State

Viewer

process()

Input
State

Simulator

process()

Output
State

Input
Control

Car and MoCap 
can be replaced 

by Simulator



Racing Car Control

� Assignment 1: Change the controller so that 
it runs the car in an endless loop

� Assignment 2: Improve the speed command 
values in the controller module.



Topics of this Course in more Detail

� Car racing as a planning problem



Team Setup

� Find your team mates

� Decide on the task assignment

� Get familiar with your task (read!)

� Define your own milestones

� Breakdown milestones into tasks



Framework Setup

� Website: http://ais.informatik.uni-freiburg.de/teaching/ws12/practicalA/

� Download the basic profile setup

� Create the ‘code’ folder in your home directory

� Checkout and compile the library fern
https://aissvn.informatik.uni-freiburg.de/svn/projects-fern

� Checkout and compile the robular framework
https://aissvn.informatik.uni-freiburg.de/svn/projects-robular/branches/practical

� Read the file README in the framework for details 
on compiling and running the code



Repository Setup

� Set up your own repository on
https://aissvn.informatik.uni-freiburg.de

� Copy the controller from the framework

� Create a CMake project

� Include the headers of the framework

� Link against the libraries of the framework



Contact

� Contact us whenever you have problems, 
questions, or ideas.

� Best is via E-Mail:
muellerj@informatik.uni-freiburg.de

� Office: Building 079, ground floor

� If you have serious problems, contact us as 
soon as possible (the other team members 
depend on you).


