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Robot Mapping  

FastSLAM – Feature-based SLAM 
with Particle Filters 
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Particle Filter in Brief 

§  Non-parametric, recursive Bayes filter 
§  Posterior is represented by a set of 

weighted samples 
§  Not limited to Gaussians 
§  Proposal to draw new samples 
§  Weight to account for the differences 

between the proposal and the target 
§  Works well in low-dimensional spaces 
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Particle Filter Algorithm 

1. Sample the next particle set using the 
proposal distribution 

2. Compute the importance weights 
 

3. Resampling: “Replace unlikely 
samples by more likely ones” 
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Particle Representation 

§  A set of weighted samples 

§  Think of a sample as one hypothesis 
about the state 

§  For feature-based SLAM: 

pose landmarks 
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Dimensionality Problem 

Particle filters are effective in low 
dimensional spaces as the likely 
volumes of the state space need to  
be covered with samples. 

high-dimensional 
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Can We Exploit Dependencies 
Between the Different 

Dimensions of the State Space? 
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If We Know the Poses of the 
Robot, Mapping is Easy! 
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Key Idea 

If we use the particle set only to model  
the  robot’s path, each sample is a path 

hypothesis. For each sample, we can then 
compute an individual map of landmarks 
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Rao-Blackwellization 

§  Factorization to exploit dependencies 
between variables: 

§  If           can be computed in closed 
form, represent only       with samples    
and compute           for every sample 



10 

Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

poses map observations & movements 

path posterior map posterior 
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First introduced for SLAM by Murphy in 1999 

How to compute this term efficiently? 
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Revisit the Graphical Model 
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Revisit the Graphical Model 
known 
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Landmarks are Conditionally 
Independent Given the Poses 

Landmark variables are all disconnected  
(i.e. independent) given the robot’s path  
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

Landmarks are conditionally  
independent given the poses 

First exploited in FastSLAM by Montemerlo et al., 2002 
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2-dimensional EKFs! 
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Rao-Blackwellization for SLAM 

§  Factorization of the SLAM posterior 

First exploited in FastSLAM by Montemerlo et al., 2002 

particle filter similar to MCL 

2-dimensional EKFs! 
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§  Sample-based representation for 
 
§  Each sample is a path hypothesis 

 
§  Past poses of a sample are not revised 
§  No need to maintain past poses in the 

sample set 

Modeling the Robot’s Path 

starting location, 
typically (0,0,0) 

pose hypothesis 
at time t=1 
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FastSLAM 
§  Proposed by Montemerlo et al. in 2002 
§  Each landmark is represented by a 2x2 EKF 
§  Each particle therefore has to maintain M 

individual EKFs 

Landmark 1 Landmark 2 Landmark M … 

Landmark 1 Landmark 2 Landmark M … 
Particle 

1 

Landmark 1 Landmark 2 Landmark M … 
Particle 

2 

Particle 
N 

…
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FastSLAM – Action Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 
2x2 EKF 

Landmark 2 
2x2 EKF 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Landmark 1 
2x2 EKF 

Landmark 2 
2x2 EKF 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Weight = 0.8 

Weight = 0.4 

Weight = 0.1 
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FastSLAM – Sensor Update 

Particle #1 

Particle #2 

Particle #3 

Update map  
of particle 1 

Update map  
of particle 2 

Update map  
of particle 3 
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Key Steps of FastSLAM 1.0 

§  Extend the path posterior by sampling 
a new pose for each sample  

§  Compute particle weight 
 

§  Update belief of observed landmarks 
(EKF update rule) 

§  Resample  

measurement covariance 

exp. observation 
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FastSLAM 1.0 – Part 1 
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FastSLAM 1.0 – Part 1 
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FastSLAM 1.0 – Part 2 

measurement cov. exp. observation 
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FastSLAM 1.0 – Part 2 (long) 
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FastSLAM  in Action 

Courtesy: Mike Montemerlo 
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The Importance Weight 

§  Derivation of the importance weight 
§  Based on the importance sampling 

principle 
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The Importance Weight 

§  The target distribution is 

 
§  The proposal distribution is 

 
§  Proposal is used step-by-step 
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The Importance Weight 
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The Importance Weight 

Bayes rule + factorization 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 
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The Importance Weight 

§  Integrating over the pose of the 
observed landmark leads to  
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The Importance Weight 

§  Integrating over the pose of the 
observed landmark leads to  



41 

The Importance Weight 

§  Integrating over the pose of the 
observed landmark leads to  
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The Importance Weight 

§  This leads to 

measurement covariance 
(pose uncertainty of l and measurement noise) 
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The Importance Weight 

§  This leads to 
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FastSLAM 1.0 – Part 2 
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Data Association Problem 

§  Which observation belongs to which 
landmark? 

§  More than one possible association 
§  Potential data associations  

depend on the pose of the robot  
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Particles Support for Multi-
Hypotheses Data Association 

§  Decisions on a per-
particle basis 
 

§  Robot pose error is 
factored out of data 
association decisions 
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Per-Particle Data Association 

Was the observation 
generated by the red 
or by the brown  
landmark? 

P(observation|red) = 0.3 P(observation|brown) = 0.7 
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Per-Particle Data Association 

P(observation|red) = 0.3 P(observation|brown) = 0.7 

§  Two options for per-particle data association 
§  Pick the most probable match 
§  Pick an random association weighted by  

the observation likelihoods 
§  If the probability for an assignment is too low, 

generate a new landmark 

Was the observation 
generated by the red 
or by the brown  
landmark? 
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Per-Particle Data Association 

§  Multi-modal belief  
§  Pose error is factored out of data 

association decisions 
§  Simple but effective data association 
§  Big advantage of FastSLAM over EKF 

Was the observation 
generated by the red 
or by the brown  
landmark? 
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Results – Victoria Park 

§  4 km traverse 
§  < 2.5 m RMS 

position error 
§  100 particles 

Blue = GPS 
Yellow = FastSLAM 

Courtesy: Mike Montemerlo 



51 

Results – Victoria Park (Video) 

Courtesy: Mike Montemerlo 
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Results (Sample Size) 
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Results (Motion Uncertainty) 
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FastSLAM 1.0 Summary 

§  Use a particle filter to model the belief 
§  Factors the SLAM posterior into low-

dimensional estimation problems 
§  Model only the robot’s path by 

sampling 
§  Compute the landmarks given the path 
§  Per-particle data association 
§  No robot pose uncertainty in the per-

particle data association  
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FastSLAM Complexity – Simple 
Implementation 
§  Update robot particles  

based on the control 

§  Incorporate an observation 
into the Kalman filters 

§  Resample particle set 

N = Number of particles 
M = Number of map features 

O(N) 

O(N) 

O(N M) 
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A Better Data Structure for 
FastSLAM 
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A Better Data Structure for 
FastSLAM 
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FastSLAM Complexity 

§  Update robot particles 
based on the control 

§  Incorporate an observation 
into the Kalman filters 

§  Resample particle set 

N = Number of particles 
M = Number of map features 

O(N log(M)) 

O(N log(M)) 

O(N log(M)) 
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Memory Complexity 
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FastSLAM 1.0 

§  FastSLAM 1.0 uses the motion model 
as the proposal distribution 

§  Is there a better distribution to 
sample from? 

[Montemerlo et al., 2002] 
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FastSLAM 1.0 to FastSLAM 2.0 

§  FastSLAM 1.0 uses the motion model 
as the proposal distribution 

§  FastSLAM 2.0 considers also the 
measurements during sampling 

§  Especially useful if an accurate sensor 
is used (compared to the motion 
noise) 

[Montemerlo et al., 2003] 
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FastSLAM 2.0 (Informally) 

§  FastSLAM 2.0 samples from 

§  Results in a more peaked proposal 
distribution 

§  Less particles are required 
§  More robust and accurate 
§  But more complex… 
 

[Montemerlo et al., 2003] 
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FastSLAM Problems 

§  How to determine the sample size? 
§  Particle deprivation, especially when 

closing (multiple) loops 

FastSLAM 1.0 FastSLAM 2.0 
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FastSLAM Summary 

§  Particle filter-based SLAM 
§  Rao-Blackwellization: model the 

robot’s path by sampling and compute 
the landmarks given the poses 

§  Allow for per-particle data association 
§  FastSLAM 1.0 and 2.0 differ in the 

proposal distribution 
§  Complexity  
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FastSLAM Results 

§  Scales well (1 million+ features) 
§  Robust to ambiguities in the data 

association 
§  Advantages compared to the classical 

EKF approach (especially with non-
linearities) 
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Literature 
FastSLAM 
§  Thrun et al.: “Probabilistic Robotics”, 

Chapter 13.1-13.3 + 13.8 (see errata!) 
§  Montemerlo, Thrun, Kollar, Wegbreit: 

FastSLAM: A Factored Solution to the 
Simultaneous Localization and Mapping 
Problem, 2002 

§  Montemerlo and Thrun: Simultaneous 
Localization and Mapping with Unknown 
Data Association Using FastSLAM, 2003 


