Robot Mapping

FastSLAM - Feature-based SLAM
with Particle Filters

Cyrill Stachniss
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Particle Filter in Brief

= Non-parametric, recursive Bayes filter

Posterior is represented by a set of
weighted samples

Not limited to Gaussians
Proposal to draw new samples

Weight to account for the differences
between the proposal and the target

= Works well in low-dimensional spaces

Particle Filter Algorithm

1. Sample the next particle set using the
proposal distribution
x£i] ~ proposal(zy | ...)
2. Compute the importance weights

wgz] _ target(mgi][_)}
proposal(z;")

3. Resampling: “Replace unlikely
samples by more likely ones”

Particle Representation

= A set of weighted samples

= Think of a sample as one hypothesis
about the state

= For feature-based SLAM:

— T
r = (xlitall,aj')ll,y)"'alM,:l’:alM,y)
pose landmarks




Dimensionality Problem

Particle filters are effective in low
dimensional spaces as the likely
volumes of the state space need to
be covered with samples.

— T
r = (xlibll,xall,y)"'alM,:L’)lM,y)

high-dimensional

Can We Exploit Dependencies
Between the Different
Dimensions of the State Space?
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If We Know the Poses of the
Robot, Mapping is Easy!
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Key Idea
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If we use the particle set only to model
the robot’s path, each sample is a path
hypothesis. For each sample, we can then
compute an individual map of landmarks




Rao-Blackwellization

= Factorization to exploit dependencies
between variables:

p(a,b) = p(b|a)p(a)

= If p(b | a) can be computed in closed
form, represent only p(a) with samples
and compute p(b | a) for every sample

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

|

p(xo-4, 1107 | 214, u1:¢)

First introduced for SLAM by Murphy in 1999 10

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

poses map observations & movements

}

p($01tal1:M | Zl:taulzt) =
p(CCO:t | zl:taulit) P(ll:M | wo:t,21:t)

T T

path posterior map posterior

First introduced for SLAM by Murphy in 1999 1

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(xot, L1 | 216 u1e) =
p(zo:t | 216 u1:t) PUa-ar | ©ost, 21:¢)

/

How to compute this term efficiently?

First introduced for SLAM by Murphy in 1999 12




Revisit the Graphical Model
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Revisit the Graphical Model
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Landmarks are Conditionally
Independent Given the Poses

x /\ ()

t—1 Xt+2

Y

Landmark variables are all disconnected
(i.e. independent) given the robot’s path e

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(xot, la:pr | 2106 u1e)
= p(il?o:t | Zlitaulit) P(ll:M | CBO:tazlzt)

/

Landmarks are conditionally
independent given the poses

First exploited in FastSLAM by Montemerlo et al., 2002 16




Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(xot, l1:pr | 210 u1:e)
= p(xo:¢ | z1:¢,u1:¢) PUL1-07 | oty 21:¢)

M
= p(zot | z1:ou1) [ pUi | 2o, 21:1)
=1
First exploited in FastSLAM by Montemerlo et al., 2002 17

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(xo:t, l1:0r | 2104, u14)

= p(zo:¢ | 214, u1:¢) PUL1-p7 | Oty 21:¢)
M

= p(xo | 2z1:u1:e) ] p(li | mowt, 21:1)

N

2-dimensional EKFs!

First exploited in FastSLAM by Montemerlo et al., 2002 18

Rao-Blackwellization for SLAM

= Factorization of the SLAM posterior

p(xo:t, la:pr | 210 w1:t)
= p(xo:¢t | 21:¢,u1:¢) PU1-0r | X0ty 21:¢)

M
= p(zot | z1:6u1:e) ] (i | 2o, 21:1)

/ i=1
particle filter similar to MCL /

2-dimensional EKFs!
First exploited in FastSLAM by Montemerlo et al., 2002 19

Modeling the Robot’s Path

= Sample-based representation for
p(zo:t | 21:4,u1:t)
= Each sample is a path hypothesis
o T o

U U

starting location, pose hypothesis
typically (0,0,0) attime t=1

= Past poses of a sample are not revised

= No need to maintain past poses in the
sample set

20




FastSLAM FastSLAM - Action Update

= Proposed by Montemerlo et al. in 2002 | Landmark 1

= Each landmark is represented by a 2x2 EKF barticle #1 Ca 2x2 EKF

*= Each particle therefore has to maintain M QB Laznc;nllzz:(rll:(Z
X

individual EKFs

G

Particle
r1| ,Y, 0. Landmark 1 | Landmark 2 .Landmark M Particle #2

Par;ucle x,y,0 . Landmark 1 | Landmark 2 . Landmark M

L~
particle Particle #3 |
N x,Y, 9. Landmark 1 | Landmark 2 I Landmark M
21 22
FastSLAM - Sensor Update FastSLAM - Sensor Update
1— Landmark 1
G’-\----Q@ 2x2 EKF O~
Particle #1 S Particle #1 = Weight = 0.8
QB Landmark 2 QB
2x2 EKF
Particle #2 -+ @ Particle #2 -+ @ Weight = 0.4
Particle #3 \: 1o Particle #3 \: T e Weight = 0.1
T 23 o 24




FastSLAM - Sensor Update

Key Steps of FastSLAM 1.0

o P = Extend the path posterior by sampling
. < Update map a new pose for each sample
Particle #1 q
of particle 1 (k] (K]
zy ~ (e | 22, ue)
e = Compute particle weight ~ ® °bsei"at'°"
. T Update ma _1 A _ )4
Particle #2 - % ofpparticleg wlkl = |2rQ| ™2 exp {_%(Zt - Z[k])TQ ! (2t — Z[k])}
measurement covariance
= Update belief of observed landmarks
Particle #3 S Te Update map (EKF update rule)
N of particle 3
R = Resample
i 25 26
FastSLAM 1.0 - Part 1 FastSLAM 1.0 - Part 1
1:  FastSLAM1.0_known_correspondence(z:, ¢, us, Xi—1): 1:  FastSLAM1.0_known_correspondence(z:, ¢, us, Xi—1):
2: for k=1 to N do // loop over all particles 2: for k=1 to N do // loop over all particles
3: Let <x£’ﬂ1, <u[1]f]t_1, E[llf]t_1> ye- > be particle k in X;_1 3: Let <x£’ﬂ1, </L[1]f]t_1, Z[llf]t_1> ,> be particle k in X;_1
4: xEk] ~ p(z | xwl,ut) // sample pose 4: acgk] ~ p(x | a:yc_]l,ut) // sample pose
5: j=c // observed feature
6: if feature j never seen before
7 ,ugkl =h" (2, xL"]) // Initialize mean
8: H= h/(uyﬂ, 34’“]) // calculate Jacobian
9: sW=Ha""Q =" // initialize covariance
10: wfk] =po // default importance weight
11: else
27 28




FastSLAM 1.0 - Part 2

FastSLAM 1.0 - Part 2 (long)

11: else
11: else A[k] [k] k] -
12: 2 = h(psy g, @) // measurement prediction
12: <M£kgv ngb = EKF-Update(...) // update landmark 13: H= h'(u[%lt_l, :cgk]) // calculate Jacobian
13: wlf = |27rQ|_% exp {_l(zt — 2[k])TQ_1 (2 — 2[’“])} 14: Q=H Eg’fl_l H" + Q. // measurement covariance
2 1‘ 15: K= E%_l H' Q! // calculate Kalman gain
. k] _ (K] 5[k]
B [*] T - 16: My =y g+ K(z —27) // update mean
measurement cov. Q =H Yje—1 HT + Q: exp. observation 17: Eycl =(I-K H)Eyfl_l // update covariance
14: endif 18: wtl = |27rQ|7% expd —=(z — 2T
15: for all unobserved features j' do Q' (s — 2[k])} // importance factor
16: <N£—If],tv Eyt) = <N£-lf],t_1a ny],t_1> // leave unchanged 19: endif
17: endfor 20: for all unobserved features j' do
18: endfor 21: <ﬂ;lf{t7 E?{ﬁ) = (.U'yﬂt_l’ Z;Ij:{t_]) // leave unchanged
23: endfor
19: X = resample <<m£k], <u[1k1, 2[1’“1> ey w[k]> > 24: endfor
el . _ ARG *]
20: return X 25: Xy =resample | (@, (H14, 50, )W -
26: return X o
29 30
FastSLAM in Action The Importance Weight
— = Derivation of the importance weight
e o e . = Based on the importance sampling
B @M L principle
i . B2 .
« e o & @ o° k
TN w[k] target (z!*])
I | YR proposal(xlk])
0 2 ° . .
d : o, | .. . .” L
Courtesy: Mike Montemerlo 31 32




The Importance Weight

= The target distribution is
p(@1t | 210, Ur:t)

= The proposal distribution is
P(T1t | 21:0-1,U1t)

= Proposal is used step-by-step

p(xl:t | Z1:t—1, Ul:t)

= g)(a:t | xt_l,utz g(wl:t_l \ Zl:t—17ulzt—1z

~ ~~

The Importance Weight

(K]
ol target(z!™)
proposal(z!)

k
p(x[ll | Z1:ty ul:t)

k
@ | 21, u) Pty | 2101, w101)

from X;_1 to A Xi_1 33 34
The Importance Weight The Importance Weight
Wk target(z[*) Wl target(z[*)
proposal (z[k]) proposal (z[k])
. p(x[lkl | Zl:taulzt) . p(x[lk}f ’ zl:taulzt)
N (k] (%] N (k] (%]
p(ag | -1 fue) p(T_y | 21e-1, v1-1) play [ we—1,u) p(eig_q | 2101, U1:4-1)
(k] (]
ooz | wi, 2a) Pl | gy, ug)
i B plat! | o ur)
Bayes rule + factorization ]
p(xl;t_l | Zl:t—lvul:t—l)
(k]
p(ml;t_l | Zl:t—lvul:t—l)
35 36




The Importance Weight

t t (¥l
Ik _targe (z'™)

proposal(z!)

k
p(aj[ll, | Z1:ty ul:t)

k
p(xgk] | l’t—but) p(x[l;l_l | z1:t-1,u1:t—1)

1 p(ze | 2, 210m1) plaatdm)

k k
l t—lvut)

p_(_:a[lﬂ___l—l—srm )
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The Importance Weight

(K]
Ll target(z!™)
proposal(z!)

k
p(x[ll | Z1:t, ul:t)

k
p(xgsk] ’ xt—laut) p(x[l;l_l | Zl:t—l;ulzt—l)

0 p(z | 21, 2em1) plabaym)

(K] k

t—lvut)
(k] )

k
= 'r]p(Zt ‘ xg_:]‘,?zllt—].)
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The Importance Weight

= Integrating over the pose of the
observed landmark leads to
wl¥!

= 7710(21; | 36[11115,21;75—1)

= / (2t | x[llfl,zlzt—lalj) p(l; | 37[1]?1721:15—1) dl;
L
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The Importance Weight

= Integrating over the pose of the
observed landmark leads to

= np(zt | 33[1]?,]5,21:15—1)

= n / p(zt | x[lk;:lazlzt—lalj) p(lj ‘ x[lk;:}t’zlzt—l) dlg
l

J

= 7 /P(Zt |2 1) p(y | M ) dly
l.

J

40




The Importance Weight

= Integrating over the pose of the
observed landmark leads to

= p(zt ! 361 t,th 1)

pzt|x1t,z1t 1,15) p(l; |a:1t,zlt 1) dl;

S\ QN\

p(z | i 1) ( a2l ze) dl;

N(zt,z[ ],Qt) N(l [k] E[k] )

Gy e _10%5 -1

The Importance Weight
= This leads to

W =y [ p<1-|m£’fl_1,zlzt-1>l ple | b 0) i

J ~\~

L Nl st y V(@)

Jtl j.t—1

$

Q=Hl Q)

7,t—1

measurement covariance
(pose uncertainty of | and measurement noise)

41 42
The Importance Weight FastSLAM 1.0 - Part 2
= This leads to o B
12: (uy4, %5 ;) = EKF-Update(...)  // update landmark
L / | k] (4]
w = 7N p(l |IIJ’ t— 721:t—1) (Ztl.’l? l ) dl 1
i ] ! tvl ~ 13: wl = |27rQ|™2 exp {——(zt — z[k]) Q" E (z¢ — é[k])}
| N (L3 Hgkl 1 ngl 1) J N2 Qe
é 14: endif
15: for a]] unobserved features j' do
[ 1 16: <N p ,E[k] ) = (,u“f] ,Z[’f] ) // leave unchanged
Q =H Egkg 1 HT + Qt 17: endfort o o
18: endfor
19: X; = resample <<m£k], <,u1 o 21k1> [k]>k:1 N)
wkFl ~ ’27@‘—% exp {_%(Zt —3FHTQ=1 (2 — g[k])} 20: return X,
43
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Data Association Problem

= Which observation belongs to which

landmark?

23«,2%\’
A

&

= More than one possible association

= Potential data associations
depend on the pose of the robot

45

Particles Support for Multi-
Hypotheses Data Association

= Decisions on a per- 6
particle basis

= Robot pose erroris . -
factored out of data - Q & Yo
association decisions el

46

Per-Particle Data Association

G’ Was the observation

generated by the red
or by the brown

\ 7) landmark?

P(observation|red) = 0.3  P(observation|brown) = 0.7
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Per-Particle Data Association

G- Was the observation
7 generated by the red

or by the brown

\ > landmark?

P(observation|red) = 0.3  P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match

= Pick an random association weighted by
the observation likelihoods

= If the probability for an assignment is too low,
generate a new landmark

48




Per-Particle Data Association

Was the observation

generated by the red

e
C or by the brown

\ j landmark?

Multi-modal belief

Pose error is factored out of data
association decisions

Simple but effective data association
Big advantage of FastSLAM over EKF

49

Results - Victoria Park

= 4 km traverse

* < 2.5 mRMS
position error

= 100 particles

Blue = GPS
= FastSLAM

“~

50

Results - Victoria Park (Video)

-

Courtesy: Mike Montemerlo
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Results (Sample Size)

Accuracy of FastSLAM vs. the EKF on Simulated Data

— FastSLAM
- - EKF
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RMS Pose Error (meters)

o
T
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Results (Motion Uncertainty)

Companson of FastSLAM and EKF G|ven Motlon Ambiguity

SISLAM
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FastSLAM 1.0 Summary

= Use a particle filter to model the belief

= Factors the SLAM posterior into low-
dimensional estimation problems

Model only the robot’s path by
sampling

Compute the landmarks given the path
Per-particle data association

No robot pose uncertainty in the per-
particle data association

54

FastSLAM Complexity — Simple
Implementation

= Update robot particles O(N)
based on the control

» Incorporate an observation C’)(N)
into the Kalman filters

O(NM)

= Resample particle set

N = Number of particles
M = Number of map features

O(N M)

55

A Better Data Structure for
FastSLAM

j=4?

j=27? j=67?

7N 2N

j<17? j<37? j<5? j<77?

AaAwASAe

u11 ok l"zs : M3;]2[K] 1}2[2] l“lsk’]zlkl Mey . u71 o l"as
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A Better Data Structure for
FastSLAM

WSS R W S 57

FastSLAM Complexity

= Update robot particles (’)(N)
based on the control

= Incorporate an observation O(N log M)
into the Kalman filters

= Resample particle set O(Nlog M)
N = Number of particles O(N log M)
M = Number of map features

58

Memory Complexity

Memory Usage of Log(N) FastSLAM vs. Linear FastSLAM - 100 Particles

120 T T
— - Log(N) FastSLAM 1.0
— Linear FastSLAM 1.0

100~

801

60

Memory (MB)

401

201

_____________________________

25 3 3.5
Number of Landmarks x10* 59

FastSLAM 1.0

= FastSLAM 1.0 uses the motion model
as the proposal distribution

(k]

k
M~ pay |2 )

= Is there a better distribution to
sample from?

[Montemerlo et al., 2002] 60




FastSLAM 1.0 to FastSLAM 2.0

= FastSLAM 1.0 uses the motion model

as the proposal distribution
-’L‘Ek] ~ p(xy | fﬂgk—]put)

= FastSLAM 2.0 considers also the
measurements during sampling

= Especially useful if an accurate sensor
is used (compared to the motion
noise)

[Montemerlo et al., 2003] 61

FastSLAM 2.0 (Informally)
= FastSLAM 2.0 samples from
xi[fk] ~ p(mt l x[llfl_laul:tazlzt)

= Results in @ more peaked proposal
distribution

= Less particles are required
= More robust and accurate
= But more complex...

[Montemerlo et al., 2003] 62

FastSLAM Problems

= How to determine the sample size?

= Particle deprivation, especially when
closing (multiple) loops

Particles share common history here

ol Eﬂ‘b -_:4"’

W D . "
1o X o
Y a8 &

FastSLAM'1.0 - 63

FastSLAM Summary

= Particle filter-based SLAM

= Rao-Blackwellization: model the
robot’s path by sampling and compute
the landmarks given the poses

= Allow for per-particle data association

= FastSLAM 1.0 and 2.0 differ in the
proposal distribution

= Complexity O(N log M)
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FastSLAM Results

= Scales well (1 million+ features)

= Robust to ambiguities in the data
association

= Advantages compared to the classical
EKF approach (especially with non-
linearities)
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FastSLAM

= Thrun et al.: “Probabilistic Robotics”,
Chapter 13.1-13.3 + 13.8 (see errata!)

= Montemerlo, Thrun, Kollar, Wegbreit:
FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping
Problem, 2002

= Montemerlo and Thrun: Simultaneous
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