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Gaussian Filters

= The Kalman filter and its variants can
only model Gaussian distributions

p(x) = det(2r) F exp (— 5 (z — )" — )
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Motivation

= Goal: approach for dealing with
arbitrary distributions
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Key Idea: Samples

= Use multiple samples to represent
arbitrary distributions
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Particle Set

= Set of weighted samples

X = {=hw)} )
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state importance
hypothesis weight

= The samples represent the posterior

N .
p(z) = Y wlls (x)
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Particles for Approximation

= Particles for function approximation

f(x)
samples

f(x)

samples

probability / weight
probability / weight
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= The more particles fall into an interval,
the higher its probability density

How to obtain such samples?



Importance Sampling Principle

= We can use a different distribution ¢
to generate samples from f

= Account for the “differences between
gand /7 using a weight w=,/g

" target f . N
- proposal g .%‘3 samples
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Importance Sampling Principle

proposal(x)
= target(x)
= samples
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Particle Filter

Recursive Bayes filter
Non-parametric approach

Models the distribution by samples
Prediction: draw from the proposal

Correction: weighting by the ratio
of target and proposal

The more samples we use,
the better is the estimate!



Particle Filter Algorithm

1. Sample the particles using the
proposal distribution
:1:7[;;] ~ (x| ...)
2. Compute the importance weights

target(a;?] )

1
w,£ = 7]
proposal(x; ")

3. Resampling: “Replace unlikely
samples by more likely ones”
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Particle Filter Algorithm

Particlg_ﬁlter(?(t_l, U, 2t )
X, =X, =10
form =1 to M do

sample 2™ ~ 7(z)

[m]
m T, )
wi™ = 2o
Xy = Xt o))
endfor
form=1 to M do
[]

draw ¢ with probability o< w,
add :Izz[f] to X}

endfor

return X;
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Monte Carlo Localization

= Each particle is a pose hypothesis
= Proposal is the motion model

)

%[52 ~ p(Ty | -1, ut)

= Correction via the observation model

2] target

Wy = proposal X p(Zt ‘ Lt m)
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Particle Filter for Localization

Particlg_ﬁlter(ﬂ(t_l, U, 2t )
X, =X =10
for m =1 to M do

sample :r;z[gm] ~ p(xy | Utﬂ??[fb

m - N
wl[5 I plzt xt )
‘)E't e .)Et —|— <£Utm ,w,{m])
endfor
for m =1 to M do
[]

draw @ with probability o w;

add a:l[f] to Xy
endfor
return X;
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Application: Particle Filter for
Localization (Known Map)

. .\‘
ARV

3

D

<
~
I

14



Resampling

= Survival of the fittest: “Replace
unlikely samples by more likely ones”

= "Trick” to avoid that many samples
cover unlikely states

» Needed as we have a limited number
of samples
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Resampling

= Roulette wheel

= Binary search
= O(n log n)

= Stochastic universal

sampling

= Low variance
= O(n)
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Low Variance Resampling

Low_variance_resampling(X;, W;):
Xt — @
r = rand(0; M 1)
c = wP]
=1
form =1 to M do
U=r+(m-1)- M1
while U > ¢
1 =1+1
c:c+wy
endwhile
add x,[f] to X;
endfor
return 2?,5
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Summary - Particle Filters

= Particle filters are non-parametric,
recursive Bayes filters

= Posterior is represented by a set of
weighted samples

= Not limited to Gaussians
= Proposal to draw new samples

= Weight to account for the differences
between the proposal and the target

= Work well in low-dimensional spaces
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Summary - PF Localization

= Particles are propagated according to
the motion model

= They are weighted according to the
likelihood of the observation

= Called: Monte-Carlo localization (MCL)

= MCL is the gold standard for mobile
robot localization today
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