

Particle Set

Set of weighted samples

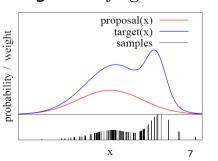
$$\mathcal{X} = \left\{ \left< x^{[i]}, w^{[i]} \right> \right\}_{i=1,...,N}$$
state importance hypothesis weight

• The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w^{[i]} \delta_{x^{[i]}}(x)$$

Importance Sampling Principle

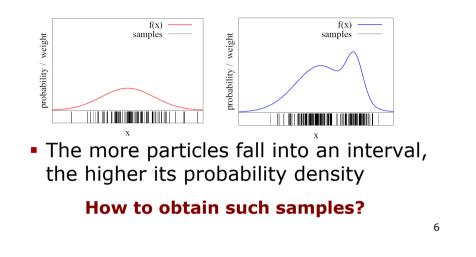
- We can use a different distribution g to generate samples from f
- Account for the "differences between g and f" using a weight w = f/g
- target f
- proposal g
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$



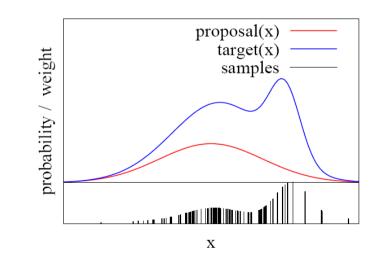
5

Particles for Approximation

Particles for function approximation



Importance Sampling Principle



Particle Filter

- Recursive Bayes filter
- Non-parametric approach
- Models the distribution by samples
- Prediction: draw from the proposal
- Correction: weighting by the ratio of target and proposal

The more samples we use, the better is the estimate!

Particle Filter Algorithm

1. Sample the particles using the proposal distribution

 $x_t^{[i]} \sim \pi(x_t \mid \ldots)$

2. Compute the importance weights

 $w_t^{[i]} = \frac{target(x_t^{[i]})}{proposal(x_t^{[i]})}$

3. Resampling: "Replace unlikely samples by more likely ones"

10

Particle Filter Algorithm

Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$): $\bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$ 1: 2: for m = 1 to M do sample $x_t^{[m]} \sim \pi(x_t)$ 3: $w_t^{[m]} = \frac{p(x_t^{[m]})}{\pi(x_t^{[m]})}$ 4: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[m]}, w_t^{[m]} \rangle$ 5:6: endfor 7: for m = 1 to M do draw i with probability $\propto w_t^{[i]}$ 8: add $x_t^{[i]}$ to \mathcal{X}_t 9: 10: endfor 11: return \mathcal{X}_t

Monte Carlo Localization

- Each particle is a pose hypothesis
- Proposal is the motion model

$$x_t^{[i]} \sim p(x_t \mid x_{t-1}, u_t)$$

Correction via the observation model

$$w_t^{[i]} = \frac{target}{proposal} \propto p(z_t \mid x_t, m)$$

11

Particle Filter for Localization

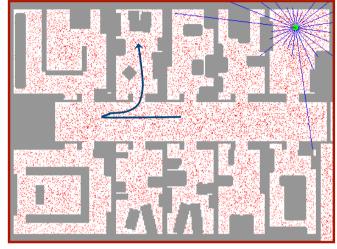
Particle_filter($\mathcal{X}_{t-1}, u_t, z_t$):		
1:	$ar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset$	
2:	for $m = 1$ to M do	
3:	sample $\underline{x}_t^{[m]} \sim p(x_t \mid u_t, x_{t-1}^{[m]})$	
4:	$w_t^{[m]} = p(z_t \mid x_t^{[m]})$	
5:	$ar{\mathcal{X}_t} = ar{\mathcal{X}_t} + \langle x_t^{[m]}, w_t^{[m]} angle$	
6:	endfor	
7:	for $m = 1$ to M do	
8:	draw <i>i</i> with probability $\propto w_t^{[i]}$	
9:	add $x_t^{[i]}$ to \mathcal{X}_t	
10:	endfor	
11:	$return \ \mathcal{X}_t$	

13

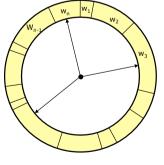
Resampling

- Survival of the fittest: "Replace unlikely samples by more likely ones"
- "Trick" to avoid that many samples cover unlikely states
- Needed as we have a limited number of samples

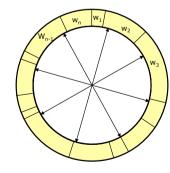
Application: Particle Filter for Localization (Known Map)



Resampling



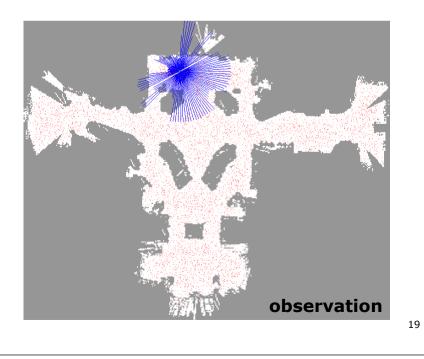
- Roulette wheel
- Binary search
- O(n log n)

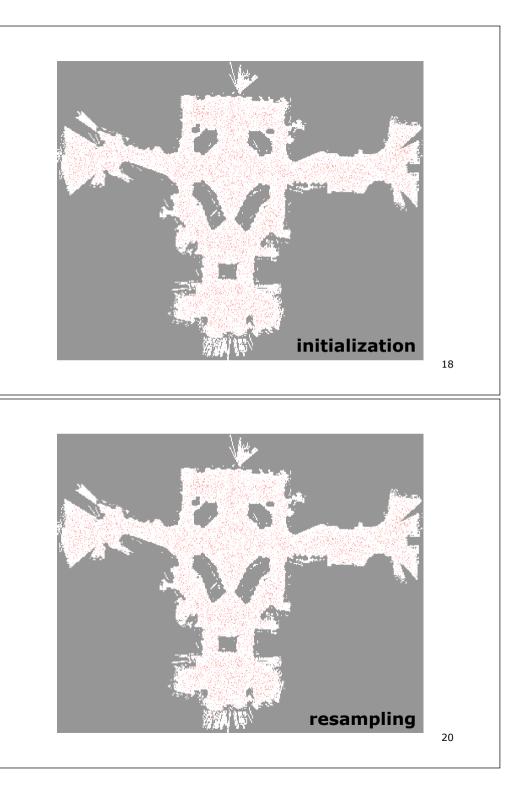


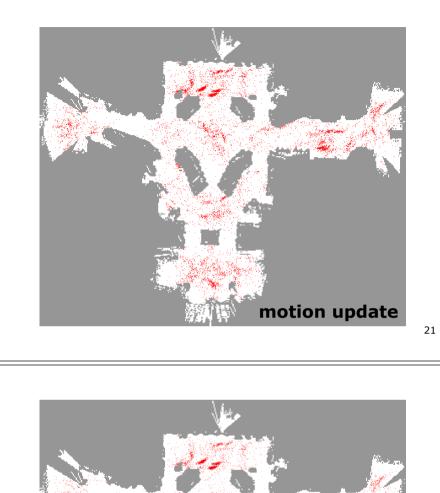
- Stochastic universal sampling
- Low variance
- O(n)

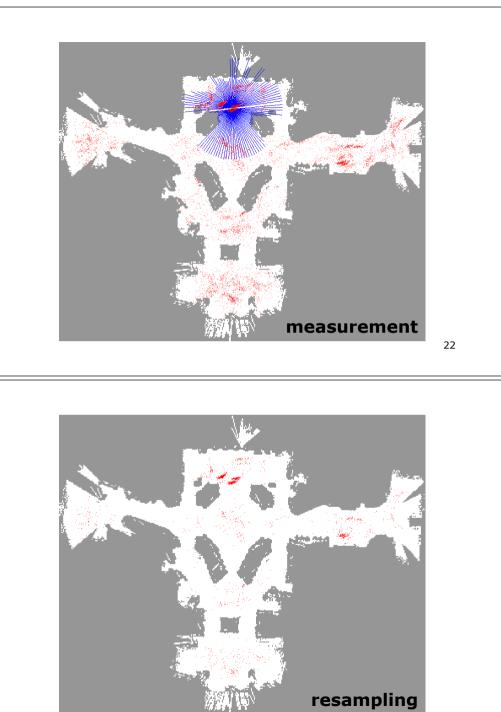
Low Variance Resampling

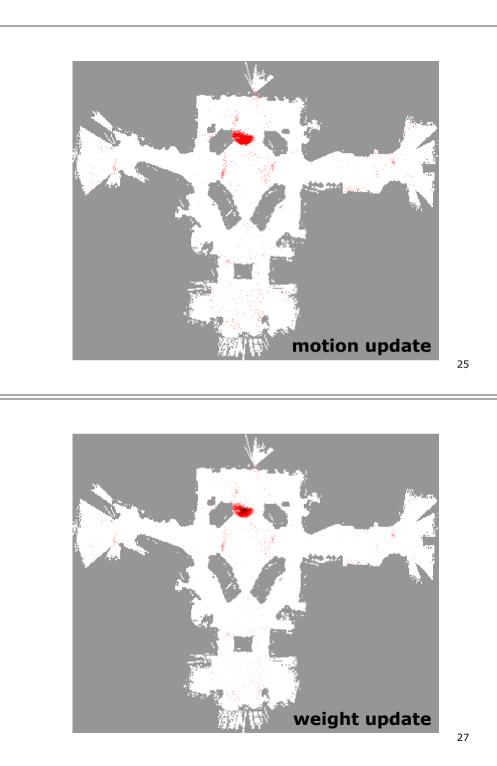
Low_	$\mathbf{variance_resampling}(\mathcal{X}_t, \mathcal{W}_t)$:
1:	$ar{\mathcal{X}}_t = \emptyset$
2:	$r = \operatorname{rand}(0; M^{-1})$
3:	$c = w_t^{[1]}$
4:	i = 1
5:	for $m = 1$ to M do
6:	$U = r + (m-1) \cdot M^{-1}$
7:	while $U > c$
8:	i = i + 1
9:	$c = c + w_t^{[i]}$
10:	endwhile
11:	add $x_t^{[i]}$ to $ar{\mathcal{X}}_t$
12:	endfor
13:	return $ar{\mathcal{X}}_t$



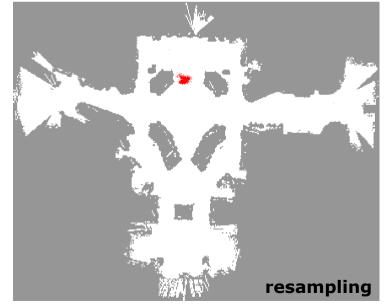


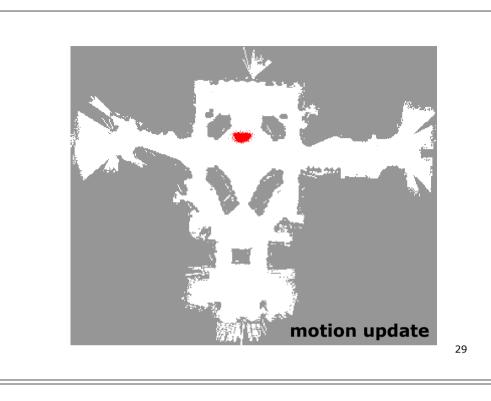


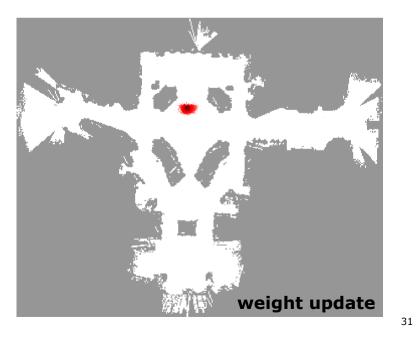


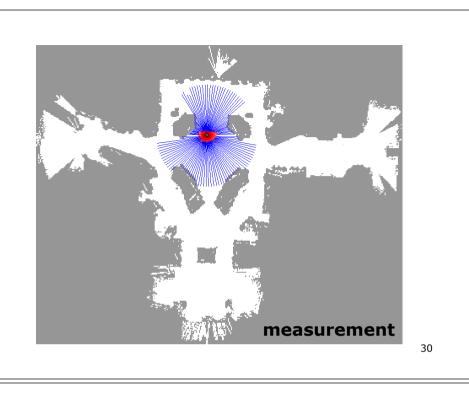


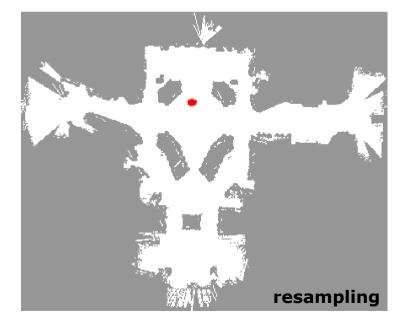
<image><image>

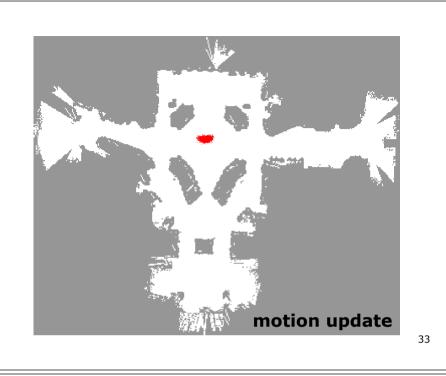












Summary – Particle Filters

- Particle filters are non-parametric, recursive Bayes filters
- Posterior is represented by a set of weighted samples
- Not limited to Gaussians
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Work well in low-dimensional spaces

Summary – PF Localization

 Particles are propagated according to the motion model

measureme

- They are weighted according to the likelihood of the observation
- Called: Monte-Carlo localization (MCL)
- MCL is the gold standard for mobile robot localization today

35