Robot Mapping

Sparse Extended Information
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Most Features Have Only a
Small Number of Strong Links

. robot features
link active passive

normalized information matrix

Information Matrix

= Information matrix can be interpreted
as a graph of constraints/links
between nodes (variables)

= (};; tells us the strength of a link
= Larger values for nearby features

= Most off-diagonal elements in the
information are close to 0 (but #0)

Sparsity

= "Set” most links to zero/avoid fill-in

= Exploit sparseness of (2 in the
computations

= sparse = finite number of non-zero
off-diagonals, independent of the
matrix size

Effect of Measurement Update
on the Information Matrix
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Effect of Measurement Update
on the Information Matrix
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Effect of Measurement Update
on the Information Matrix
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Effect of Measurement Update
on the Information Matrix

= Adds information between the robot’s
pose and the observed feature
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Effect of Motion Update on the
Information Matrix
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Effect of Motion Update on the
Information Matrix

Tt41 1M1 M2 M3

Effect of Motion Update on the
Information Matrix
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Effect of Motion Update on the Sparsification
Information Matrix
= Weakens the links between the robot’s
pose and the landmarks T+ M2 M3 Tiy1
= Add links between landmarks T+
m
Tt mipmams Ti+1111 M2 M3 !
mao
Li+1
m m
. 3 o 2 ?53
‘ m2
ms3 before sparsification
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Sparsification

Sparsification
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before sparsification removal of the link between m; and T¢+1
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Sparsification Sparsification
= Sparsification means ignoring links
(assuming conditional independence)
Tl My ma ms Tt+1 = Here: links between the robot’s pose
Tt+1 and some of the features
m
1 Tt411M1 Mo M3 Tt41 1M1 1Mo M3
m2 X X
t+1 t+1
m m
3 my 2 ?;‘:3

effect of the sparsification
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Active and Passive Landmarks

= One of the key aspects of SEIF SLAM
to obtain efficiency

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others
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Active vs. Passive Landmarks
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Sparsification in Every Step

= SEIF SLAM conducts a sparsification
steps in each iteration

Effect:

= The robot’s pose is linked to the active
landmarks only

= Landmarks have only links to nearby
landmarks (landmarks that have been
active at the same time)
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Key Steps of SEIF SLAM

1. Motion update
2. Measurement update
3. Sparsification
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Four Steps of SEIF SLAM

1. Motion update

2. Update of the state estimate
3. Measurement update

4. Sparsification

EIF updates: The mean is needed
to apply the motion update and for
computing an expected measurement

25

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1,Us, 2t ):

Et, Q, iz = SEIF _motion_update(&_1, Y1, fie—1, Ug)
ur = SEIF update_state_estimate(&;, 2y, fir)

&,Q; = SEIF _measurement_update(&;, Qy, 111, 2¢)

&, = SEIF _sparsification(&;, Qy, ;)

return th, Qt, Ut

Note: we maintain &, 2, it
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Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fe—1, Ut, 2¢):

- &y, iy = SEIF_motion_update(&_1, 1, pre—1, ur)
2: ur = SEIF _update_state_estimate(&;, 4, jir)

3: &,y = SEIF _measurement_update(&;, 2y, pit, 2¢)

4: ét, Q= SEIF sparsification(&;, ¢, 1)

9: return {;:t, Qt, Lt
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Matrix Inversion Lemma

= Before we start, let us re-visit the
matrix inversion lemma

= For any invertible quadratic matrices R
and Q and any matrix P, the following
holds:

(R+P QP 1t =
R'-R'PQ'+PTR!'P)'PT R
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SEIF SLAM - Prediction Step

= Goal: Compute &, Qy, i; from motion
and the previous estimate &, %,

= Efficiency by exploiting sparseness of

the information matrix

Let us start from EKF SLAM...

EKF_SLAM Prediction(u—1, X1, us, 2¢, Rt):

v COS#t 1,0 — —i cos(ph—1,0 + wiAt)
tht

0
0 —Zksinpy_1 0+ i L sin(pup—1,0 + wiAt)
0

( Sesinpuy,0 + 55 sin(pe—1,0 +wiAt) )
0

0

0 ()

cosut Lo+2 cos(ut 1,0 + weAt)
4 Gy =I+FT F,

5: Zt = Gt 21571 Gg‘ F Rz F
%,_/

R,
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Let us start from EKF SLAM... Let us start from EKF SLAM...
EKF_SLAM Prediction(u—1, X¢—1,ut, 2¢, Rt): EKF_SLAM Prediction(p—1, X1, ut, 2¢, Rt):
1 0 0 0---0 1 0 0 0---0
2. F, = 01 0 0---0 2: F, = 01 0 0---0
001 0 0 copy & paste 0 01 0---0 /copy & paste
Sesinpu1,0 + 55 sin(ue-1,0 +wiAt) SEsinpu_1,0 + 55 sin(pe-1,0 +weAt)
3t fig =1+ FF v‘ CObMt 1,0 — w_i cos(pue—1,0 + weAt) 3t =1+ FY CObMt 1,0 — w_i cos(pte—1,0 + weAt)
wi At copy & paste wi At copy & paste
0 0 —& cosut Lotk cos(ut 1,0 + wiAt) 00 —= Cosut Lo+t Cos(uf 1,0 + wiAt)
4: Gy=I+FF | 0 0 - obsingu—1,0+ 355 B S sin(p—1,0 + wiAt) 4: Gy=I+FF' | 0 0 - obsingu—1,0+ 5t Bt S sin(p—1,0 + wiAt)
0 0 0 copy & paste 0 0 0 copy & paste
5 % =G5 1 G +FI' R F, 5 % =Gy% 1 GF +FI' Ry .
SN—— \
R | | Fy
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use that as a building block for the IF update... 5,




SEIF - Prediction Step (1/3)

Algorithm SEIF _motion_update(&_1,Q:—_1, tit—1, ut):

10 0 0---0

2 F, = 010 0---0
001 0---0

——

2N

( —absinpu—1,0 + 28 sin(p—1,0 +wiAt) )
3 0=

e _ v
ohcosp-1,0 — o cos(pu—1,0 + wiAt)

tht
COS fht—1,0 — :)_i cos(pe—1,0 + wiAt) )

'U_t

Wt

vt g _ g

obsin 1,0 — 2 sin(pe—1,0 + wiAt)
0
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Information Matrix

= Computing the information matrix
Q = ¥t
=[G G + Rt}_l
= Define
o = (G0 cr
= [G{]7 Qe G

= Which leads to
Q = [®7'+ R
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Information Matrix

= We can expand the noise matrix R

O = [+ R

= [o7 +FrRIE)
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Information Matrix

= Apply the matrix inversion lemma

— —1
O = [0+ Ry
= [0+ F; R} Fy]
= & —-®, F' (R '+ F, & F"' F, &,

—1

3x3 matrix
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Information Matrix

= Apply the matrix inversion lemma

— —1
Q = [®;'+ R
= [0+ F Ry Fy
= &, -0, FI(RI '+ F, & FI)"' F, &,

T 3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

-1

37

Information Matrix

= Apply the matrix inversion lemma

% = [&7'+R]

= [o' + F R Fy]

= & -0, FI(R'+F, & FI)"'F, &,
3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

-1

= Constant complexity if ¢, is sparse!
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Information Matrix

= This can be written as

— -1
Q = [0+ R
_ -1 T pzx
= [®;'+F, R} F,]
= & & FI (R '+ F, & FI)™' F, &,

-~

—1

Kt

= &, — kK

= Question: Can we compute o,
efficiently (o, = [GT]™' Q,_1 G;1)?
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Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+F'AF)™!

- (%)
[

3x3 identity 2Nx2N identity
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Computing &, = [GT]"' Q,_; G;*

= Goal: constant time if Q;_; is sparse
G;' = (IU+FTAF,)™!

A+ 0 T
N 0 Ion

_ (A+1I3)71 0
- 0 Loy

holds for all block matrices where
the off-diagonal blocks are zero

41

Computing @, = [GT]! Q,_; G; !

= Goal: constant time if 2:—; is sparse
G;' = (I+FF'AF,)™!

[ A+I; 0 T
N 0 Irn

_ ((A+013)—1 I;)N)

(A+L)t-13 0 )

= I3+2N+< 7‘ 0 0

Note: 3x3 matrix
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Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+FF'AF,)™!

A+ 0 N\
B 0 Ion

_ ((A+OI3)—1 ISN)

A+I)y ' =13 0
= I3+2N+(( 33 ’ o)

= I+F [I+AN" -1 F,

S/

7,
= I—f—\Ilt
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Computing &, = [GT]7' Q,_1 G;*
= We have
G l=I+7, Gt =1+9f
= with
U =F; [(I+A)7 1 F,

3x3 matrix

= U, is zero except of a 3x3 block
= G;'is an identity except of a 3x3 block
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Computing &, = [GT]"' Q,_; G;* Constant Time Computing of ¢,

Given that: = Given ;_; is sparse, the constant time

= G;'and [GT]7! are identity matrices update can be seen by
except of a 3x3 block

= The information matrix is sparse
= This implies that

o, = [GY]I7' G
= ([+9YD)Q (I+7)
= U+ U+ QT

~~

_ T1—1 —1 e
by = [Gt ] 1 G = Yat M
= can be computed in constant time all zero elements except
a constant number of entries
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Prediction Step in Brief SEIF - Prediction Step (2/3)
- CompLIte \Ijt SEIF _motion_update(&§;—1, Q_1, fir—1, ut):
= Compute )\; based on ¥, 2 F=
3 =...
= Compute ¢, based on )\, 4 A=
5 U =F [(I+A) =1 F,
= Compute Kt based on @, 6 A =TT Oy + Qs Uyt T Oy T,
= Compute (2; based on Ky T By =+ A
8 k=0 F'(R;'+F,® FI)"' F, &,
9: Qt:q)t—l‘it

Information matrix is computed, now do the
same for the information vector and the mean
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Compute Mean
= The mean is computed as in the EKF
e = -1+ Fg;T Y

= Reminder (from SEIF motion update)

10 0 0---0

% F, = 01 0 0---0
001 0---0

——

2N

—absinpu_1,0 + 25 sin(p—1,0 + wiAt)
3 = Steospi—1,0 — o cos(pe—1, + wiAt)
tht
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Compute the Information Vector
= We obtain the information vector by

&

= Q (-1 + F; 6)

= O (Qt_—ll -1+ Fg d¢)
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Compute the Information Vector

= We obtain the information vector by
&

= O (-1 +FL6)

= (Qt_—ll §—1+ Fg d¢)

= QN &+ FL 5
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Compute the Information Vector

= We obtain the information vector by
&
= O (-1 + FL )
= QL G+ FE 6
= QO &+ QU FL 6
= (Qt 0y + Dy — Q1 + Q1) Qt__ll &1+ Fg Oy

=1 =1
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Compute the Information Vector

= We obtain the information vector by

&t

Q¢ (-1 + F )
Q (Y &1+ EL 6y)
(oA Qt__ll 1+ FzT 0y
(Q =P+ O —Q 1 + Q1) Qt__ll &1+ FE 0y
=1 =1
(Q — P+ P — Q1) Qt__ll E—1+ Qt__ll &1+ Qs FL o,

= ke = A = pt—1 =1

Compute the Information Vector

= We obtain the information vector by

Q (-1 + F 6)
Q (Y &1+ L 6y)
N Qt__ll &1+ F;f 0y
(Q =@y + Py — 1 + Q1) QY &1 + Q4 EE 65
=1 =1
(Q — @, +fbt - Qt—11) Qt__ll §i—1 +§2t—1 Qt__ll &1+ Q¢ FL 5,
= —ki =X = pe_1 =1
1+ (Ao — Ke) o1+ Ff 0y
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SEIF - Prediction Step (3/3) Four Steps of SEIF SLAM
SEIF _motion_update(&_1, 21, fe—1,ut):
gj 5Fx: = SEIF_SLAM(&,_1, Q1. ftr—1, Uz, 2):
4 A=-.. L &, , iy = SEIF-metion-update(Sr=rrQr=rrttr=1, DONE
5. W, =Fl'[(I+A)t-1]F, 2:,  u; = SEIF update state_estimate(&;, (), fit)
6: N=UTQ 1 +Q U +VQ 0, &, = SEIF_measurement_update(&;, Qy, 1it, 2¢)
T D=1+ N 4: &L =~S]§)IF_Sparsiﬁcation(£t, Qu, )
8 k=0 FI(R;'+ F, & FI)"' F, &, 5: return &,
9: Qt = q)t — Kt
100 & =&-1+ (M — k) -1+ FL 6,
11: ﬂt:NtrleFa:T(s
12: return &, 4, fiy
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SEIF — Measurement (1/2)

SEIF - Measurement (2/2)

SEIF_measurement_update(&;, Qy, uis, 2;) S —V@: —aby, 0 0...0 +/q0, /g5, 0...0
. 0: ‘=L 3, 6, —q 0...0 -6, +6, 0...0
L Q= < 06 2 > =2 N=2j
2:  for all observeg¢features 2t = (r}, )T do }; encifo; ST O (s s
3: j = ci€ (data association) Ph= Sf 2 Hi o _1[zt T AT pal
4: if landmark j never seen before _ 13 QO =Q+ 3, Hy Q Hi
5. < [,z > _ < [tz > n ( Ty cos(p + fite) ) 14: return &,
. y iy ity T sin(f + fite)
O endil P Difference to EKF (but as in EIF): o
7. 6:Qz>:(_]‘,z_—t,z>
0 Fijy = [, 3 T -1 1.1 _ zi j
&  q=0ors S & = §t+ZHZ Qr [zt — B+ H{ pu]
” 5’5:( an2(6,00) — i ) i
atanz(0y, 0z ) — Ht0 — . _ .
— Q = O+ HTQH)
identical to the EKF SLAM - s
Four Steps of SEIF SLAM Sparsification

SEIF_SLAM(gt_l, Qt—h Ht—1, Ut, Zt).'

2: pe = SEIF update state_estimate(&;, (2, fir)

&, :~SEIF_sparsiﬁcation(§t, Qu, )
5: return &, 4, it

I & Qi = SEIF motion update(&: 1, Q1. p1r—1,DONE

3: &,Q; = SEIF _.measurement_update(&;, Qy, 11, 2:) DO
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= Question: what does sparsification of

the information matrix means?
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Sparsification

= Question: what does sparsification of
the information matrix means?
= [t means ignoring direct links between
random variables (assuming a
conditional independence)
Tt411M1 Mo M3 Ti411M1 M2 M3

Lt+1 Lt+1
mi mi
ma2 - ma2
ms ms o

Sparsification in General
= Replace the distribution
p(a,b,c)

= by an approximation p so that a and b
are independent given ¢

p(b]a,c)=p|c)
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Approximation by Assuming
Conditional Independence

= This leads to

p(a,b,c) = p

approximation
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Sparsification in SEIFs

= Goal: approximate () so that it is
(and stays) sparse

= Realized by: maintaining only links
between the robot and a few
landmarks

= This also limits the number of links
between landmarks
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Limit Robot-Landmark Links

= Consider a set of active landmarks
during the updates

robot features

active passive

7o )

link

normalized information matrix
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Active and Passive Landmarks

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others
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Sparsification Considers Three
Sets of Landmarks

= Active ones that stay active
= Active ones that become passive
= Passive ones

m = mT +m® + m”
active active passive
to passive
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Sparsification

= Remove links between robot’s pose
and active landmarks that become
passive

= Equal to conditional independence
given the other landmarks

= No change in the links of passive ones
= Sparsification is an approximation!

P(»Tt,m | Zl:taulzt) = p(xt,m+,m0,m_ | Zl:t,u1:t)
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Sparsification

= Dependencies from z,u not shown:

p($t,m) - p(xt7m+7m07m_)
= pla | mT,m,m™) p(m™,m",m")
= p(a:t|m+,m0,m =0) (m mo m™)

Given the active landmarks, the
passive landmarks do not matter
for computing the robot’s pose
(so set to zero)
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Sparsification

= Dependencies from z,u not shown:

plxgy,m) = plag,m”’ ,m° ,m”)
m™) p(m*,m’ m”)

(
= p(zy | mT,mP,
p(zs | mT,m®,m™ =0) p(m™,m" m™)
(

= P

2 | m*,m™ = 0) pm*,m®,m")

1

Sparsification: assume conditional
independence of the robot’s pose from
the landmarks that become passive

(given m*™,m~ =0) i

Sparsification

= Dependencies from z,u not shown:

p(xy,m) = p(azt,m mom)

= D

I
g
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Information Matrix Update

= Sparsifying the direct links between
the robot’s pose and m° results in

ﬁ(xt,m | Z1:t,u1:t)

p($t’m+‘m7:0,21tault) (m m"'m ’Z1tult)
mT [ m=™ = 0,214, u1.t) 7

= The spaxsificafjon replages Q,¢ by
approximated walues

= Express () \as a sym of three matrices

Q = AL -Q2+0
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Information Vector Update

= The information vector can be
recovered directly by:

& = Qt Mt

= (D — U + U)w
= Qo+ (Q — )
= & + (Qt — Q)
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Sparsification Step

SEIF _sparsification (&, Qy, p):

1: define Fy,,, Fy.m,, Fr as projection matrices
to mo, {x,mp}, and z, respectively

2 = Q-9 F,, (FT Q) Frp) ' FL QO
+QO 9377‘&0( x,mo QO :cmg)_ xmo QO
— O F, (FT O, F,)"' FT @,

3 & =&+ (% — Q)
4: return §~t, QO

Q = U-02+0
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Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fe—1, Ut, 2¢):

£, Q4. iy = SEIF _motion_update(& 1,9 1, 111, DONE

‘ u: = SEIF update_state_estimate(&;, Q, fi)
ft,Qt SEIF _measurement._ update(ft,ﬂt,ut,zt) DONE

4: &, = SEIF_spar51ﬁcatlon(£t,Qt ) DONE
5: return {ft, Qt, bt
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Recovering the Mean

= Computing the exact mean requires
p=Q"1¢ whichis costly!

The mean is needed for the
* linearized motion model (pose)

» [inearized measurement model
(pose and visible landmarks)

= sparsification step (pose and subset
of the landmarks)
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Approximation of the Mean

= Computing the (few) dimensions of
the mean in an approximated way

= Idea: Treat that as an optimization
problem and seek to find

fi = argmax p(y)

* Finding the mean that maximize the
probability density function?
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Approximation of the Mean

= Derive function

= Set first derivative to zero
= Solve equation(s)

= Jterate

= Can be done effectively given that only
a few dimensions of ( are needed

no further details here...
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Four Steps of SEIF SLAM

SEIF_SLAM(gt_l, Qt—h Ht—1, Ut, Zt).'

1: gt; Qt, = SEIF_motion_update(ﬁttl,Qt_l, =1, QpNE
2: iy = SEIF _update state_estimate(&;, Qy, jir) DONE
3: &.Q; = SEIF _measurement_update(&;, Q. 111, ;) DQNE
4: &, = SEIF _sparsification(&;, 4, 111) DONE
9: return g}, Qt, Lo
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Effect of the Sparsification
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SEIF SLAM vs. EKF SLAM

= Roughly constant time complexity
vs. quadratic complexity of the EKF

= Linear memory complexity
vs. quadratic complexity of the EKF

= SEIF SLAM is less accurate than EKF
SLAM (sparsification, mean recovery)
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SEIF & EKF: CPU Time

1.2

SEIF —e—
EKF —8—
1 s i

08 -
06 [ -
04 -

0.2 -

CPU time/iteration(second)

0 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Number of landmarks
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SEIF & EKF: Memory Usage

1 1 1 1 1 1 1 1
| SEIF —e— |
6e+06 EKF

5e+06 |- -
4e+06 [ -

3e+06 - .

Bytes

2e+06 - -

1e+06 I .

0 I I 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

Number of landmarks
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SEIF & EKF: Error Comparison

0.04 T T T T T T

SEIF —e—
0.035 | EKF —=—

0.03 - .
0.025 =
0.02 - =

0.015 - -

Average error

0.01 .
0.005 - .

0 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Number of landmarks
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Influence of the Active Features

Influence of the Active Features

EKF 10 9 8 7 6 5 4 EKF 10 9 8 7 6 5 4
160 = ‘ ‘ - - ‘ : : ' - - - , , ‘ -
0.6 |
140 -
o 120+ 05
b
£ 100} S 04
[}] =
s w0 ‘L;J’ 03}
$ ol £ | reasonable values for the
s 02 NUMber of active features
40 - l
20t 0.1 | T
EKF 10 o 8 Y 8 > 4 EKF 10 9 8 7 6 5
Active Features :
85 Active Features 86
Summary in SEIF SLAM Literature

= SEIFs are an efficient approximation
of the EIF for the SLAM problem

= Neglects direct links by sparsification
= Mean computation is an approxmation

= Constant time updates of the filter
(for known correspondences)

* Linear memory complexity

= Inferior quality compared to EKF
SLAM
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Sparse Extended Information Filter

= Thrun et al.: “Probabilistic Robotics”,
Chapter 12.1-12.7
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