Robot Mapping

Sparse Extended Information

Two Parameterizations for a
Gaussian Distribution

. moments canonical
Filter for SLAM
»=Q! Q=x""
i stachn : =07 | | £=32""
Cyrill Stachniss ::E M = = M
-
’3: covariance matrix information matrix
AIS i mean vector information vector
1 2
Motivation Motivation
/small but
non-zero
Gaussian normalized normalized
estimate covariance information

(map & pose) matrix matrix

normalized information matrix

Most Features Have Only a
Small Number of Strong Links

. robot features
link active passive

normalized information matrix

Information Matrix

= Information matrix can be interpreted
as a graph of constraints/links
between nodes (variables)

= (};; tells us the strength of a link
= Larger values for nearby features

= Most off-diagonal elements in the
information are close to 0 (but #0)

Sparsity

= "Set” most links to zero/avoid fill-in

= Exploit sparseness of (2 in the
computations

= sparse = finite number of non-zero
off-diagonals, independent of the
matrix size

Effect of Measurement Update
on the Information Matrix

Tt M1MoMs3 Tt
o G
mi
mo *
ms3 ?n(l m2 Y¢

before any observations

Effect of Measurement Update
on the Information Matrix

Lt M1mams T
T .
e pie
m m
3 R
3

robot observes landmark 1

Effect of Measurement Update
on the Information Matrix

Lt M1mMmams T
Lt
mi
ma
m m
3 T
3

robot observes landmark 2
10

Effect of Measurement Update
on the Information Matrix

= Adds information between the robot’s
pose and the observed feature

Tt M1Moms Tt M1 Mo M3

Lt
m —>

11

Effect of Motion Update on the
Information Matrix

Lt M1mMmams Tt
Lt
my
mo
m m
3 SR
3

before the robot’s movement
12

Effect of Motion Update on the
Information Matrix

Tt41 1M1 M2 M3

Effect of Motion Update on the
Information Matrix

Tei1 Tt+1 1M1 M2 M3 Ti+1
Tti1 Tt41 I
mi — | mi
ma ma
ms3 ™ m2 Yy ms3 m me Y
ms ms3
after the robot’'s movement effect of the robot’'s movement
13 14
Effect of Motion Update on the Sparsification
Information Matrix
= Weakens the links between the robot’s
pose and the landmarks T+ M2 M3 Tiy1
= Add links between landmarks T+
m
Tt mipmams Ti+1111 M2 M3 !
mao
Li+1
m m
. 3 o 2 ?53
‘ m2
ms3 before sparsification

15

16

Sparsification

Sparsification

Tt41 1M1 M2 M3 Tit1 Tt4+1 101 M2 N3 Tt41
Li4+1 . Li+1
ma \) ma \
mo ma
ms a3 mo ?}: ms my ma Z};
3 3
before sparsification removal of the link between m; and T¢+1
17 18
Sparsification Sparsification
= Sparsification means ignoring links
(assuming conditional independence)
Tl My ma ms Tt+1 = Here: links between the robot’s pose
Tt+1 and some of the features
m
1 Tt411M1 Mo M3 Tt41 1M1 1Mo M3
m2 X X
t+1 t+1
m m
3 my 2 ?;‘:3

effect of the sparsification

19

ma ‘ ma
mao mao

m3 m3

20

Active and Passive Landmarks

= One of the key aspects of SEIF SLAM
to obtain efficiency

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

21

Active vs. Passive Landmarks

Tt+11M1 M2 M3

Tia1 Lt41
m
ma
ms3
m
ml _2 *
. active ms
was active,]
now passive passive

22

Sparsification in Every Step

= SEIF SLAM conducts a sparsification
steps in each iteration

Effect:

= The robot’s pose is linked to the active
landmarks only

= Landmarks have only links to nearby
landmarks (landmarks that have been
active at the same time)

23

Key Steps of SEIF SLAM

1. Motion update
2. Measurement update
3. Sparsification

24

Four Steps of SEIF SLAM

1. Motion update

2. Update of the state estimate
3. Measurement update

4. Sparsification

EIF updates: The mean is needed
to apply the motion update and for
computing an expected measurement

25

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fle—1,Us, 2t):

Et, Q, iz = SEIF _motion_update(&_1, Y1, fie—1, Ug)
ur = SEIF update_state_estimate(&;, 2y, fir)

&,Q; = SEIF _measurement_update(&;, Qy, 111, 2¢)

&, = SEIF _sparsification(&;, Qy, ;)

return th, Qt, Ut

Note: we maintain &, 2, it

26

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fe—1, Ut, 2¢):

- &y, iy = SEIF_motion_update(&_1, 1, pre—1, ur)
2: ur = SEIF _update_state_estimate(&;, 4, jir)

3: &,y = SEIF _measurement_update(&;, 2y, pit, 2¢)

4: ét, Q= SEIF sparsification(&;, ¢, 1)

9: return {;:t, Qt, Lt

27

Matrix Inversion Lemma

= Before we start, let us re-visit the
matrix inversion lemma

= For any invertible quadratic matrices R
and Q and any matrix P, the following
holds:

(R+P QP 1t =
R'-R'PQ'+PTR!'P)'PT R

28

SEIF SLAM - Prediction Step

= Goal: Compute &, Qy, i; from motion
and the previous estimate &, %,

= Efficiency by exploiting sparseness of

the information matrix

Let us start from EKF SLAM...

EKF_SLAM Prediction(u—1, X1, us, 2¢, Rt):

v COS#t 1,0 — —i cos(ph—1,0 + wiAt)
tht

0
0 —Zksinpy_1 0+ i L sin(pup—1,0 + wiAt)
0

(Sesinpuy,0 + 55 sin(pe—1,0 +wiAt))
0

0

0 ()

cosut Lo+2 cos(ut 1,0 + weAt)
4 Gy =I+FT F,

5: Zt = Gt 21571 Gg‘ F Rz F
%,_/

R,
29 30
Let us start from EKF SLAM... Let us start from EKF SLAM...
EKF_SLAM Prediction(u—1, X¢—1,ut, 2¢, Rt): EKF_SLAM Prediction(p—1, X1, ut, 2¢, Rt):
1 0 0 0---0 1 0 0 0---0
2. F, = 01 0 0---0 2: F, = 01 0 0---0
001 0 0 copy & paste 0 01 0---0 /copy & paste
Sesinpu1,0 + 55 sin(ue-1,0 +wiAt) SEsinpu_1,0 + 55 sin(pe-1,0 +weAt)
3t fig =1+ FF v‘ CObMt 1,0 — w_i cos(pue—1,0 + weAt) 3t =1+ FY CObMt 1,0 — w_i cos(pte—1,0 + weAt)
wi At copy & paste wi At copy & paste
0 0 —& cosut Lotk cos(ut 1,0 + wiAt) 00 —= Cosut Lo+t Cos(uf 1,0 + wiAt)
4: Gy=I+FF | 0 0 - obsingu—1,0+ 355 B S sin(p—1,0 + wiAt) 4: Gy=I+FF' | 0 0 - obsingu—1,0+ 5t Bt S sin(p—1,0 + wiAt)
0 0 0 copy & paste 0 0 0 copy & paste
5 % =G5 1 G +FI' R F, 5 % =Gy% 1 GF +FI' Ry .
SN—— \
R | | Fy

31

use that as a building block for the IF update... 5,

SEIF - Prediction Step (1/3)

Algorithm SEIF _motion_update(&_1,Q:—_1, tit—1, ut):

10 0 0---0

2 F, = 010 0---0
001 0---0

——

2N

(—absinpu—1,0 + 28 sin(p—1,0 +wiAt))
3 0=

e _ v
ohcosp-1,0 — o cos(pu—1,0 + wiAt)

tht
COS fht—1,0 — :)_i cos(pe—1,0 + wiAt))

'U_t

Wt

vt g _ g

obsin 1,0 — 2 sin(pe—1,0 + wiAt)
0

33

Information Matrix

= Computing the information matrix
Q = ¥t
=[G G + Rt}_l
= Define
o = (G0 cr
= [G{]7 Qe G

= Which leads to
Q = [®7'+ R

34

Information Matrix

= We can expand the noise matrix R

O = [+ R

= [o7 +FrRIE)

35

Information Matrix

= Apply the matrix inversion lemma

— —1
O = [0+ Ry
= [0+ F; R} Fy]
= & —-®, F' (R '+ F, & F"' F, &,

—1

3x3 matrix

36

Information Matrix

= Apply the matrix inversion lemma

— —1
Q = [®;'+ R
= [0+ F Ry Fy
= &, -0, FI(RI '+ F, & FI)"' F, &,

T 3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

-1

37

Information Matrix

= Apply the matrix inversion lemma

% = [&7'+R]

= [o' + F R Fy]

= & -0, FI(R'+F, & FI)"'F, &,
3x3 matrix T

Zero except Zero except
3x3 block 3x3 block

-1

= Constant complexity if ¢, is sparse!

38

Information Matrix

= This can be written as

— -1
Q = [0+ R
_ -1 T pzx
= [®;'+F, R} F,]
= & & FI (R '+ F, & FI)™' F, &,

-~

—1

Kt

= &, — kK

= Question: Can we compute o,
efficiently (o, = [GT]™' Q,_1 G;1)?

39

Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+F'AF)™!

- (%)
[

3x3 identity 2Nx2N identity

40

Computing &, = [GT]"' Q,_; G;*

= Goal: constant time if Q;_; is sparse
G;' = (IU+FTAF,)™!

A+ 0 T
N 0 Ion

_ (A+1I3)71 0
- 0 Loy

holds for all block matrices where
the off-diagonal blocks are zero

41

Computing @, = [GT]! Q,_; G; !

= Goal: constant time if 2:—; is sparse
G;' = (I+FF'AF,)™!

[A+I; 0 T
N 0 Irn

_ ((A+013)—1 I;)N)

(A+L)t-13 0)

= I3+2N+< 7‘ 0 0

Note: 3x3 matrix

42

Computing &, = [GT]7' Q,_1 G;*

= Goal: constant time if 2;_; is sparse
G;' = (I+FF'AF,)™!

A+ 0 N\
B 0 Ion

_ ((A+OI3)—1 ISN)

A+I)y ' =13 0
= I3+2N+((33 ’ o)

= I+F [I+AN" -1 F,

S/

7,
= I—f—\Ilt

43

Computing &, = [GT]7' Q,_1 G;*
= We have
G l=I+7, Gt =1+9f
= with
U =F; [(I+A)7 1 F,

3x3 matrix

= U, is zero except of a 3x3 block
= G;'is an identity except of a 3x3 block

44

Computing &, = [GT]"' Q,_; G;* Constant Time Computing of ¢,

Given that: = Given ;_; is sparse, the constant time

= G;'and [GT]7! are identity matrices update can be seen by
except of a 3x3 block

= The information matrix is sparse
= This implies that

o, = [GY]I7' G
= ([+9YD)Q (I+7)
= U+ U+ QT

~~

_ T1—1 —1 e
by = [Gt] 1 G = Yat M
= can be computed in constant time all zero elements except
a constant number of entries
45 46
Prediction Step in Brief SEIF - Prediction Step (2/3)
- CompLIte \Ijt SEIF _motion_update(&§;—1, Q_1, fir—1, ut):
= Compute)\; based on ¥, 2 F=
3 =...
= Compute ¢, based on)\, 4 A=
5 U =F [(I+A) =1 F,
= Compute Kt based on @, 6 A =TT Oy + Qs Uyt T Oy T,
= Compute (2; based on Ky T By =+ A
8 k=0 F'(R;'+F,® FI)"' F, &,
9: Qt:q)t—l‘it

Information matrix is computed, now do the
same for the information vector and the mean

47 48

Compute Mean
= The mean is computed as in the EKF
e = -1+ Fg;T Y

= Reminder (from SEIF motion update)

10 0 0---0

% F, = 01 0 0---0
001 0---0

——

2N

—absinpu_1,0 + 25 sin(p—1,0 + wiAt)
3 = Steospi—1,0 — o cos(pe—1, + wiAt)
tht
49

Compute the Information Vector
= We obtain the information vector by

&

= Q (-1 + F; 6)

= O (Qt_—ll -1+ Fg d¢)

50

Compute the Information Vector

= We obtain the information vector by
&

= O (-1 +FL6)

= (Qt_—ll §—1+ Fg d¢)

= QN &+ FL 5

51

Compute the Information Vector

= We obtain the information vector by
&
= O (-1 + FL)
= QL G+ FE 6
= QO &+ QU FL 6
= (Qt 0y + Dy — Q1 + Q1) Qt__ll &1+ Fg Oy

=1 =1

52

Compute the Information Vector

= We obtain the information vector by

&t

Q¢ (-1 + F)
Q (Y &1+ EL 6y)
(oA Qt__ll 1+ FzT 0y
(Q =P+ O —Q 1 + Q1) Qt__ll &1+ FE 0y
=1 =1
(Q — P+ P — Q1) Qt__ll E—1+ Qt__ll &1+ Qs FL o,

= ke = A = pt—1 =1

Compute the Information Vector

= We obtain the information vector by

Q (-1 + F 6)
Q (Y &1+ L 6y)
N Qt__ll &1+ F;f 0y
(Q =@y + Py — 1 + Q1) QY &1 + Q4 EE 65
=1 =1
(Q — @, +fbt - Qt—11) Qt__ll §i—1 +§2t—1 Qt__ll &1+ Q¢ FL 5,
= —ki =X = pe_1 =1
1+ (Ao — Ke) o1+ Ff 0y

53 54
SEIF - Prediction Step (3/3) Four Steps of SEIF SLAM
SEIF _motion_update(&_1, 21, fe—1,ut):
gj 5Fx: = SEIF_SLAM(&,_1, Q1. ftr—1, Uz, 2):
4 A=-.. L &, , iy = SEIF-metion-update(Sr=rrQr=rrttr=1, DONE
5. W, =Fl'[(I+A)t-1]F, 2:, u; = SEIF update state_estimate(&;, (), fit)
6: N=UTQ 1 +Q U +VQ 0, &, = SEIF_measurement_update(&;, Qy, 1it, 2¢)
T D=1+ N 4: &L =~S]§)IF_Sparsiﬁcation(£t, Qu,)
8 k=0 FI(R;'+ F, & FI)"' F, &, 5: return &,
9: Qt = q)t — Kt
100 & =&-1+ (M — k) -1+ FL 6,
11: ﬂt:NtrleFa:T(s
12: return &, 4, fiy
55 56

SEIF — Measurement (1/2)

SEIF - Measurement (2/2)

SEIF_measurement_update(&;, Qy, uis, 2;) S —V@: —aby, 0 0...0 +/q0, /g5, 0...0
. 0: ‘=L 3, 6, —q 0...0 -6, +6, 0...0
L Q= < 06 2 > =2 N=2j
2: for all observeg¢features 2t = (r},)T do }; encifo; ST O (s s
3: j = ci€ (data association) Ph= Sf 2 Hi o _1[zt T AT pal
4: if landmark j never seen before _ 13 QO =Q+ 3, Hy Q Hi
5. < [,z > _ < [tz > n (Ty cos(p + fite)) 14: return &,
. y iy ity T sin(f + fite)
O endil P Difference to EKF (but as in EIF): o
7. 6:Qz>:(_]‘,z_—t,z>
0 Fijy = [, 3 T -1 1.1 _ zi j
& q=0ors S & = §t+ZHZ Qr [zt — B+ H{ pu]
” 5’5:(an2(6,00) — i) i
atanz(0y, 0z) — Ht0 — . _ .
— Q = O+ HTQH)
identical to the EKF SLAM - s
Four Steps of SEIF SLAM Sparsification

SEIF_SLAM(gt_l, Qt—h Ht—1, Ut, Zt).'

2: pe = SEIF update state_estimate(&;, (2, fir)

&, :~SEIF_sparsiﬁcation(§t, Qu,)
5: return &, 4, it

I & Qi = SEIF motion update(&: 1, Q1. p1r—1,DONE

3: &,Q; = SEIF _.measurement_update(&;, Qy, 11, 2:) DO

59

= Question: what does sparsification of

the information matrix means?

60

Sparsification

= Question: what does sparsification of
the information matrix means?
= [t means ignoring direct links between
random variables (assuming a
conditional independence)
Tt411M1 Mo M3 Ti411M1 M2 M3

Lt+1 Lt+1
mi mi
ma2 - ma2
ms ms o

Sparsification in General
= Replace the distribution
p(a,b,c)

= by an approximation p so that a and b
are independent given ¢

p(b]a,c)=p|c)

62

Approximation by Assuming
Conditional Independence

= This leads to

p(a,b,c) = p

approximation
63

Sparsification in SEIFs

= Goal: approximate () so that it is
(and stays) sparse

= Realized by: maintaining only links
between the robot and a few
landmarks

= This also limits the number of links
between landmarks

64

Limit Robot-Landmark Links

= Consider a set of active landmarks
during the updates

robot features

active passive

7o)

link

normalized information matrix

65

Active and Passive Landmarks

Active Landmarks
= A subset of all landmarks
= Includes the currently observed ones

Passive Landmarks
= All others

66

Sparsification Considers Three
Sets of Landmarks

= Active ones that stay active
= Active ones that become passive
= Passive ones

m = mT +m® + m”
active active passive
to passive

67

Sparsification

= Remove links between robot’s pose
and active landmarks that become
passive

= Equal to conditional independence
given the other landmarks

= No change in the links of passive ones
= Sparsification is an approximation!

P(»Tt,m | Zl:taulzt) = p(xt,m+,m0,m_ | Zl:t,u1:t)

68

Sparsification

= Dependencies from z,u not shown:

p($t,m) - p(xt7m+7m07m_)
= pla | mT,m,m™) p(m™,m",m")
= p(a:t|m+,m0,m =0) (m mo m™)

Given the active landmarks, the
passive landmarks do not matter
for computing the robot’s pose
(so set to zero)

69

Sparsification

= Dependencies from z,u not shown:

plxgy,m) = plag,m”’ ,m° ,m”)
m™) p(m*,m’ m”)

(
= p(zy | mT,mP,
p(zs | mT,m®,m™ =0) p(m™,m" m™)
(

= P

2 | m*,m™ = 0) pm*,m®,m")

1

Sparsification: assume conditional
independence of the robot’s pose from
the landmarks that become passive

(given m*™,m~ =0) i

Sparsification

= Dependencies from z,u not shown:

p(xy,m) = p(azt,m mom)

= D

I
g

71

Information Matrix Update

= Sparsifying the direct links between
the robot’s pose and m° results in

ﬁ(xt,m | Z1:t,u1:t)

p($t’m+‘m7:0,21tault) (m m"'m ’Z1tult)
mT [m=™ = 0,214, u1.t) 7

= The spaxsificafjon replages Q,¢ by
approximated walues

= Express () \as a sym of three matrices

Q = AL -Q2+0

72

Information Vector Update

= The information vector can be
recovered directly by:

& = Qt Mt

= (D — U + U)w
= Qo+ (Q —)
= & + (Qt — Q)

73

Sparsification Step

SEIF _sparsification (&, Qy, p):

1: define Fy,,, Fy.m,, Fr as projection matrices
to mo, {x,mp}, and z, respectively

2 = Q-9 F,, (FT Q) Frp) ' FL QO
+QO 9377‘&0(x,mo QO :cmg)_ xmo QO
— O F, (FT O, F,)"' FT @,

3 & =&+ (% — Q)
4: return §~t, QO

Q = U-02+0

74

Four Steps of SEIF SLAM

SEIF_SLAM (&1, 1, fe—1, Ut, 2¢):

£, Q4. iy = SEIF _motion_update(& 1,9 1, 111, DONE

‘ u: = SEIF update_state_estimate(&;, Q, fi)
ft,Qt SEIF _measurement._ update(ft,ﬂt,ut,zt) DONE

4: &, = SEIF_spar51ﬁcatlon(£t,Qt) DONE
5: return {ft, Qt, bt

75

Recovering the Mean

= Computing the exact mean requires
p=Q"1¢ whichis costly!

The mean is needed for the
* linearized motion model (pose)

» [inearized measurement model
(pose and visible landmarks)

= sparsification step (pose and subset
of the landmarks)

76

Approximation of the Mean

= Computing the (few) dimensions of
the mean in an approximated way

= Idea: Treat that as an optimization
problem and seek to find

fi = argmax p(y)

* Finding the mean that maximize the
probability density function?

77

Approximation of the Mean

= Derive function

= Set first derivative to zero
= Solve equation(s)

= Jterate

= Can be done effectively given that only
a few dimensions of (are needed

no further details here...

78

Four Steps of SEIF SLAM

SEIF_SLAM(gt_l, Qt—h Ht—1, Ut, Zt).'

1: gt; Qt, = SEIF_motion_update(ﬁttl,Qt_l, =1, QpNE
2: iy = SEIF _update state_estimate(&;, Qy, jir) DONE
3: &.Q; = SEIF _measurement_update(&;, Q. 111, ;) DQNE
4: &, = SEIF _sparsification(&;, 4, 111) DONE
9: return g}, Qt, Lo

79

Effect of the Sparsification

80

SEIF SLAM vs. EKF SLAM

= Roughly constant time complexity
vs. quadratic complexity of the EKF

= Linear memory complexity
vs. quadratic complexity of the EKF

= SEIF SLAM is less accurate than EKF
SLAM (sparsification, mean recovery)

81

SEIF & EKF: CPU Time

1.2

SEIF —e—
EKF —8—
1 s i

08 -
06 [-
04 -

0.2 -

CPU time/iteration(second)

0 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Number of landmarks

82

SEIF & EKF: Memory Usage

1 1 1 1 1 1 1 1
| SEIF —e— |
6e+06 EKF

5e+06 |- -
4e+06 [-

3e+06 - .

Bytes

2e+06 - -

1e+06 I .

0 I I 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

Number of landmarks

83

SEIF & EKF: Error Comparison

0.04 T T T T T T

SEIF —e—
0.035 | EKF —=—

0.03 - .
0.025 =
0.02 - =

0.015 - -

Average error

0.01 .
0.005 - .

0 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
Number of landmarks

84

Influence of the Active Features

Influence of the Active Features

EKF 10 9 8 7 6 5 4 EKF 10 9 8 7 6 5 4
160 = ‘ ‘ - - ‘ : : ' - - - , , ‘ -
0.6 |
140 -
o 120+ 05
b
£ 100} S 04
[}] =
s w0 ‘L;J’ 03}
$ ol £ | reasonable values for the
s 02 NUMber of active features
40 - l
20t 0.1 | T
EKF 10 o 8 Y 8 > 4 EKF 10 9 8 7 6 5
Active Features :
85 Active Features 86
Summary in SEIF SLAM Literature

= SEIFs are an efficient approximation
of the EIF for the SLAM problem

= Neglects direct links by sparsification
= Mean computation is an approxmation

= Constant time updates of the filter
(for known correspondences)

* Linear memory complexity

= Inferior quality compared to EKF
SLAM

87

Sparse Extended Information Filter

= Thrun et al.: “Probabilistic Robotics”,
Chapter 12.1-12.7

88

