

Most Features Have Only a Small Number of Strong Links

Information Matrix

- Information matrix can be interpreted as a graph of constraints/links between nodes (variables)
- Ω_{ij} tells us the strength of a link
- Larger values for nearby features
- Most off-diagonal elements in the information are close to 0 (but ≠ 0)

Sparsity

- "Set" most links to zero/avoid fill-in
- Exploit sparseness of Ω in the computations
- sparse = finite number of non-zero off-diagonals, independent of the matrix size

7

Effect of Measurement Update on the Information Matrix

before any observations

Effect of Measurement Update on the Information Matrix

Effect of Measurement Update on the Information Matrix

 Adds information between the robot's pose and the observed feature

Effect of Measurement Update on the Information Matrix

robot observes landmark 2

Effect of Motion Update on the Information Matrix

before the robot's movement

Effect of Motion Update on the Information Matrix

13

after the robot's movement

Effect of Motion Update on the Information Matrix

- Weakens the links between the robot's pose and the landmarks
- Add links between landmarks

Effect of Motion Update on the Information Matrix

effect of the robot's movement

Sparsification

before sparsification

 \checkmark

 m_3

Active and Passive Landmarks

 One of the key aspects of SEIF SLAM to obtain efficiency

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

21

Active vs. Passive Landmarks

Sparsification in Every Step

 SEIF SLAM conducts a sparsification steps in each iteration

Effect:

- The robot's pose is linked to the active landmarks only
- Landmarks have only links to nearby landmarks (landmarks that have been active at the same time)

Key Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Sparsification

Four Steps of SEIF SLAM

- 1. Motion update
- 2. Update of the state estimate
- 3. Measurement update
- 4. Sparsification

EIF updates: The mean is needed **r** to apply the motion update and for computing an expected measurement

25

Four Steps of SEIF SLAM

SEIF_SLAM $(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t)$:

- $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t_1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- 2: $\mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t)$
- 3: $\xi_t, \Omega_t = \mathbf{SEIF}_{-}\mathbf{measurement}_{-}\mathbf{update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_{\mathsf{sparsification}}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Four Steps of SEIF SLAM

SEIF_SLAM $(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t)$:

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF}_{-}\mathbf{motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- 2: $\mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t)$
- 3: $\xi_t, \Omega_t = \mathbf{SEIF}_{-}\mathbf{measurement}_{-}\mathbf{update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_{\mathsf{sparsification}}(\xi_t, \Omega_t, \mu_t)$
- 5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Note: we maintain ξ_t, Ω_t, μ_t

26

Matrix Inversion Lemma

- Before we start, let us re-visit the matrix inversion lemma
- For any invertible quadratic matrices R and Q and any matrix P, the following holds:

$$(R + P Q P^{T})^{-1} =$$

$$R^{-1} - R^{-1} P (Q^{-1} + P^{T} R^{-1} P)^{-1} P^{T} R^{-1}$$

SEIF SLAM – Prediction Step

- Goal: Compute $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$ from motion and the previous estimate ξ_t, Ω_t, μ_t
- Efficiency by exploiting sparseness of the information matrix

29

Let us start from EKF SLAM...

	XF_SLAM_Prediction ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$):
	$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} $ copy & paste
	$\bar{\mu}_{t} = \mu_{t-1} + F_{x}^{T} \left(\begin{array}{c} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \omega_{t}\Delta t \end{array} \right) $
4:	$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x $
	$\bar{\Sigma}_t = G_t \ \Sigma_{t-1} \ G_t^T + \underbrace{F_x^T \ R_t^x \ F_x}_{R_t}$
	31

Let us start from EKF SLAM...

Let us start from EKF SLAM...

SEIF – Prediction Step (1/3)

Alg	gorithm SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):
	$F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & \underbrace{0 \cdots 0}_{2N} \end{pmatrix}$
	$\delta = \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$
4:	$\Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$

33

Information Matrix

• We can expand the noise matrix R

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t \right]^{-1} = \left[\Phi_t^{-1} + F_x^T R_t^x F_x \right]^{-1}$$

Information Matrix

- Computing the information matrix $\bar{\Omega}_t = \bar{\Sigma}_t^{-1}$ $= [G_t \Omega_{t-1}^{-1} G_t^T + R_t]^{-1}$
- Define

$$\Phi_t = \left[G_t \ \Omega_{t-1}^{-1} \ G_t^T \right]^{-1} \\ = \left[G_t^T \right]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

• Which leads to $\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$

34

Information Matrix

Apply the matrix inversion lemma

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1} \\
= \Phi_{t} - \Phi_{t} F_{x}^{T} \left[R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T}\right]^{-1} F_{x} \Phi_{t}$$
333 matrix

Information Matrix

Apply the matrix inversion lemma

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1}$$

$$= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1}$$

$$= \Phi_{t} - \Phi_{t} F_{x}^{T} (R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T})^{-1} F_{x} \Phi_{t}$$

$$\int \mathbf{X}^{2} \mathbf{x}^{3} \mathbf{x$$

Information Matrix

This can be written as

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1} \\
= \Phi_{t} - \underbrace{\Phi_{t} F_{x}^{T} (R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T})^{-1} F_{x} \Phi_{t}}_{\kappa_{t}} \\
= \Phi_{t} - \kappa_{t}$$

• Question: Can we compute Φ_t efficiently ($\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$)?

Information Matrix

Apply the matrix inversion lemma

$$\begin{split} \bar{\Omega}_t &= \left[\Phi_t^{-1} + R_t\right]^{-1} \\ &= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1} \\ &= \Phi_t - \Phi_t F_x^T \left(\frac{R_t^{x-1} + F_x \Phi_t F_x^T\right)^{-1}}{3x3 \text{ matrix}} f_x \Phi_t \\ &\uparrow &\uparrow &\uparrow &\uparrow &\uparrow \\ &Zero \text{ except} &Zero \text{ except} \\ &3x3 \text{ block} &Zero \text{ except} \\ &3x3 \text{ block} &Zero \text{ except} \\ &3x3 \text{ block} &Zero \text{ except} \\ &Zero \text{ except} \\ &Zero \text{ except} &Zero \text{ except} \\ &Zero \text{$$

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

• Goal: constant time if
$$\Omega_{t-1}$$
 is sparse
 $G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$
 $= \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$
3x3 identity 2Nx2N identity

$$\begin{aligned} & \textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ Goal: constant time if } \Omega_{t-1} \text{ is sparse} \\ & G_t^{-1} = (I + E_x^T \, \Delta F_x)^{-1} \\ & = \left(\left(\Delta + I_3 \right)^{-1} \\ & = \left(\left(\Delta + I_3 \right)^{-1} \\ & = \left(\left(\Delta + I_3 \right)^{-1} \\ & D_{t-1} \right) \\ & D_{t-1} \text{ for all block matrices where} \\ & \text{the off-diagonal blocks are zero} \end{aligned} \end{aligned}$$

$$\begin{aligned} \textbf{Summatrix} \end{aligned}$$

$$\textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ of aligonal blocks are zero} \end{aligned}$$

$$\textbf{M} \end{aligned}$$

$$\textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ of aligonal blocks are zero} \end{aligned}$$

$$\textbf{M} \end{aligned}$$

$$\textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ of aligonal blocks are zero} \end{aligned}$$

$$\textbf{M} \end{aligned}$$

$$\textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ of aligonal blocks are zero} \end{aligned}$$

$$\textbf{M} \end{aligned}$$

$$\textbf{M} \end{aligned}$$

$$\textbf{Computing } \Phi_t = [G_t^T]^{-1} \, \Omega_{t-1} \, G_t^{-1} \\ & \textbf{ of aligonal blocks are zero} \end{aligned}$$

$$\textbf{M} \end{aligned}
$$\textbf{M}$$

$$\textbf{M} \end{aligned}
$$\textbf{M} \end{aligned}$$

$$\textbf{M} \end{aligned}
$$\textbf{M}$$

$$\textbf{M}$$$$$$$$

Computing $\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$

Given that:

- G_t⁻¹ and [G_t^T]⁻¹ are identity matrices except of a 3x3 block
- The information matrix is sparse
- This implies that

 $\Phi_t = [G_t^T]^{-1} \ \Omega_{t-1} \ G_t^{-1}$

can be computed in constant time

45

Prediction Step in Brief

- Compute Ψ_t
- Compute λ_t based on Ψ_t
- Compute Φ_t based on λ_t
- Compute κ_t based on Φ_t
- Compute $\overline{\Omega}_t$ based on κ_t

Constant Time Computing of Φ_t

• Given Ω_{t-1} is sparse, the constant time update can be seen by

$$\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$$

$$= (I + \Psi_t^T) \Omega_{t-1} (I + \Psi_t)$$

$$= \Omega_{t-1} + \underbrace{\Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t}_{\lambda_t}$$

$$= \Omega_{t-1} + \lambda_t$$

all zero elements except a constant number of entries

46

SEIF – Prediction Step (2/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$): 2: $F_x = \cdots$ 3: $\delta = \cdots$ 4: $\Delta = \cdots$ 5: $\Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x$ 6: $\lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t$ 7: $\Phi_t = \Omega_{t-1} + \lambda_t$ 8: $\kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t$ 9: $\bar{\Omega}_t = \Phi_t - \kappa_t$

Information matrix is computed, now do the same for the information vector and the mean

Compute Mean

The mean is computed as in the EKF

$$\bar{\mu}_t = \mu_{t-1} + F_x^T \,\delta$$

Reminder (from SEIF motion update)

2:
$$F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 \cdots & 0 \\ 0 & 0 & 1 & \underbrace{0 \cdots & 0}_{2N} \end{pmatrix}$$

3:
$$\delta = \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \omega_{t}\Delta t \end{pmatrix}$$

Compute the Information Vector

- We obtain the information vector by
- $\bar{\xi_t}$
- $= \quad \bar{\Omega}_t \ (\mu_{t-1} + F_x^T \ \delta_t)$
- $= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \xi_{t-1} + F_x^T \delta_t \right)$
- $= \quad \bar{\Omega}_t \; \Omega_{t-1}^{-1} \; \xi_{t-1} + \bar{\Omega}_t \; F_x^T \; \delta_t$

Compute the Information Vector

• We obtain the information vector by $\bar{\xi}_t$ = $\bar{\Omega}_t (\mu_{t-1} + F_x^T \delta_t)$ = $\bar{\Omega}_t (\Omega_t^{-1}, \xi_{t-1} + F_x^T \delta_t)$

50

Compute the Information Vector

• We obtain the information vector by $\bar{\xi}_{t}$ $= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})$ $= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$ $= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$ $= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$

Compute the Information Vector

We obtain the information vector by

F

$$\begin{split} \xi_t \\ &= \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \, \delta_t \right) \\ &= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \, \xi_{t-1} + F_x^T \, \delta_t \right) \\ &= \bar{\Omega}_t \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \\ &= \left(\bar{\Omega}_t \underbrace{-\Phi_t + \Phi_t}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1} \right) \, \Omega_{t-1}^{-1} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \\ &= \left(\underbrace{\bar{\Omega}_t - \Phi_t}_{=-\kappa_t} + \underbrace{\Phi_t - \Omega_{t-1}}_{=\lambda_t} \right) \underbrace{\Omega_{t-1}^{-1} \, \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \, \Omega_{t-1}^{-1}}_{=I} \, \xi_{t-1} + \bar{\Omega}_t \, F_x^T \, \delta_t \end{split}$$

53

SEIF – Prediction Step (3/3)

 $\begin{aligned} \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t): \\ 2: \quad F_x = \cdots \\ 3: \quad \delta = \cdots \\ 4: \quad \Delta = \cdots \\ 5: \quad \Psi_t = F_x^T \left[(I + \Delta)^{-1} - I \right] F_x \\ 6: \quad \lambda_t = \Psi_t^T \ \Omega_{t-1} + \Omega_{t-1} \ \Psi_t + \Psi_t^T \ \Omega_{t-1} \ \Psi_t \\ 7: \quad \Phi_t = \Omega_{t-1} + \lambda_t \\ 8: \quad \kappa_t = \Phi_t \ F_x^T (R_t^{-1} + F_x \ \Phi_t \ F_x^T)^{-1} \ F_x \ \Phi_t \\ 9: \quad \bar{\Omega}_t = \Phi_t - \kappa_t \\ 10: \quad \bar{\xi}_t = \xi_{t-1} + (\lambda_t - \kappa_t) \ \mu_{t-1} + \bar{\Omega}_t \ F_x^T \ \delta_t \\ 11: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \ \delta \\ 12: \quad \text{return} \ \bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t \end{aligned}$

Compute the Information Vector

• We obtain the information vector by

$$\bar{\xi}_{t}$$

= $\bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})$
= $\bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$
= $\bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$
= $(\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$
= $(\underbrace{\bar{\Omega}_{t} - \Phi_{t}}_{=-\kappa_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=\lambda_{t}}) \underbrace{\Omega_{t-1}^{-1} \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \Omega_{t-1}^{-1}}_{=I} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$
= $\xi_{t-1} + (\lambda_{t} - \kappa_{t}) \mu_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$

54

Four Steps of SEIF SLAM

SEIF – Measurement (1/2)

 $\begin{aligned} \mathbf{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t) \\ 1: \quad Q_t &= \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_{\phi}^2 \end{pmatrix} \\ 2: \quad \text{for all observed features } z_t^i &= (r_t^i, \phi_t^i)^T \text{ do} \\ 3: \quad j &= c_t^i \checkmark \qquad (\text{data association}) \\ 4: \quad \text{if landmark } j \text{ never seen before} \\ 5: \quad \begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} &= \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix} \\ 6: \quad \text{endif} \\ 7: \quad \delta &= \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix} \\ 8: \quad q &= \delta^T \delta \\ 9: \quad \hat{z}_t^i &= \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix} \end{aligned}$

identical to the EKF SLAM

Four Steps of SEIF SLAM

 $\mathbf{SEIF}_{\mathbf{SLAM}}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t):$

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, \mathbf{DONE})$
- 2: $\mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t)$
- 3: $\xi_t, \Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t) \mathbf{DONE}$
 - $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_{\mathsf{sparsification}}(\xi_t, \Omega_t, \mu_t)$

 $: \quad return \, \tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

SEIF – Measurement (2/2)

$$\Omega_t = \bar{\Omega}_t + \sum_i^i H_t^{iT} Q_t^{-1} H_t^i$$

Sparsification

 Question: what does sparsification of the information matrix means?

59

57

Sparsification

- Question: what does sparsification of the information matrix means?
- It means ignoring direct links between random variables (assuming a conditional independence)

Approximation by Assuming Conditional Independence

This leads to

$$p(a, b, c) = p(a \mid b, c) p(b \mid c) p(c)$$

$$\simeq p(a \mid c) p(b \mid c) p(c)$$

$$= p(a \mid c) \frac{p(c)}{p(c)} p(b \mid c) p(c)$$

$$= \frac{p(a, c) p(b, c)}{p(c)}$$

approximation

Sparsification in General

Replace the distribution

p(a, b, c)

- by an approximation \tilde{p} so that a and b are independent given c

$$\tilde{p}(a \mid b, c) = p(a \mid c)$$
$$\tilde{p}(b \mid a, c) = p(b \mid c)$$

62

Sparsification in SEIFs

- Goal: approximate Ω so that it is (and stays) sparse
- Realized by: maintaining only links between the robot and a few landmarks
- This also limits the number of links between landmarks

Limit Robot-Landmark Links

 Consider a set of active landmarks during the updates

65

Sparsification Considers Three Sets of Landmarks

- Active ones that stay active
- Active ones that become passive
- Passive ones

$$m = m^+ + m^0 + m$$

active active passive to passive

Active and Passive Landmarks

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

66

Sparsification

- Remove links between robot's pose and active landmarks that become passive
- Equal to conditional independence given the other landmarks
- No change in the links of passive ones
- Sparsification is an approximation!

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = p(x_t, m^+, m^0, m^- \mid z_{1:t}, u_{1:t})$$

$$\simeq \dots$$

Sparsification

• Dependencies from z, u not shown: $p(x_t, m) = p(x_t, m^+, m^0, m^-)$ $= p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$ $= p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$ $\simeq \cdots$ Given the active landmarks, the passive landmarks do not matter for computing the robot's pose (so set to zero)

Sparsification

• Dependencies from z, u not shown:

$$p(x_t, m) = p(x_t, m^+, m^0, m^-)$$

= $p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$
= $p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$
 $\simeq p(x_t | m^+, m^- = 0) p(m^+, m^0, m^-)$
= $\frac{p(x_t, m^+ | m^- = 0)}{p(m^+ | m^- = 0)} p(m^+, m^0, m^-)$
= $\tilde{p}(x_t, m)$

Sparsification

- Dependencies from z, u not shown:

$$p(x_t, m) = p(x_t, m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^-) p(m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$$

$$\simeq p(x_t \mid m^+, m^- = 0) p(m^+, m^0, m^-)$$

$$f$$
Sparsification: assume conditional ndependence of the robot's pose from the landmarks that become passive

70

Information Matrix Update

 Sparsifying the direct links between the robot's pose and m⁰ results in

(given $m^+, m^- = 0$)

$$\tilde{p}(x_t, m \mid z_{1:t}, u_{1:t})$$

$$\simeq \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t})$$

- The sparsification replaces Ω, ξ by approximated values
- Express $\tilde{\Omega}$ as a sum of three matrices $\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$

Information Vector Update

 The information vector can be recovered directly by:

$$\begin{split} \tilde{\xi}_t &= \tilde{\Omega}_t \ \mu_t \\ &= (\Omega_t \ - \ \Omega_t \ + \ \tilde{\Omega}_t) \ \mu_t \\ &= \Omega_t \ \mu_t \ + \ (\tilde{\Omega}_t \ - \ \Omega_t) \ \mu \\ &= \xi_t \ + \ (\tilde{\Omega}_t \ - \ \Omega_t) \ \mu_t \end{split}$$

73

Four Steps of SEIF SLAM

SEIF_SLAM $(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t)$: 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t =$ SEIF_motion_update $(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, QONE$ 2: $\mu_t =$ SEIF_update_state_estimate $(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t)$ 3: $\xi_t, \Omega_t =$ SEIF_measurement_update $(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)$ DONE

4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_{sparsification}(\xi_t, \Omega_t, \mu_t)$ DONE

5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Sparsification Step

Recovering the Mean

- Computing the exact mean requires $\mu = \Omega^{-1} \xi \mbox{ , which is costly! }$

The mean is needed for the

- linearized motion model (pose)
- linearized measurement model (pose and visible landmarks)
- sparsification step (pose and subset of the landmarks)

Approximation of the Mean

- Computing the (few) dimensions of the mean in an **approximated** way
- Idea: Treat that as an optimization problem and seek to find

 $\hat{\mu} = \operatorname{argmax} p(\mu)$

 Finding the mean that maximize the probability density function?

77

Four Steps of SEIF SLAM

SEIF_SLAM $(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t)$:

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF}_{-} \mathbf{motion}_{-} \mathbf{update}(\xi_{t-1}, \underline{\Omega}_{t-1}, \mu_{t-1}, \mathbf{QONE})$
- 2: $\mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t) \longrightarrow \mathsf{DONE}$
- 3: $\xi_t, \Omega_t = \mathbf{SEIF}_{-}\mathbf{measurement_update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t) \mathsf{DONE}$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_s \mathbf{parsification}(\xi_t, \Omega_t, \mu_t)$ DONE

5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Approximation of the Mean

- Derive function
- Set first derivative to zero
- Solve equation(s)
- Iterate
- Can be done effectively given that only a few dimensions of μ are needed

no further details here...

78

Effect of the Sparsification

SEIF SLAM vs. EKF SLAM

- Roughly constant time complexity vs. quadratic complexity of the EKF
- Linear memory complexity vs. quadratic complexity of the EKF
- SEIF SLAM is less accurate than EKF SLAM (sparsification, mean recovery)

81

83

SEIF & EKF: CPU Time

SEIF & EKF: Memory Usage

SEIF & EKF: Error Comparison

Summary in SEIF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects direct links by sparsification
- Mean computation is an approxmation
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Influence of the Active Features

Literature

Sparse Extended Information Filter

 Thrun et al.: "Probabilistic Robotics", Chapter 12.1-12.7