
Albert-Ludwigs-Universität Freiburg, Institut für Informatik
PD Dr. Cyrill Stachniss
Lecture: Robot Mapping
Winter term 2012

Sheet 10
Topic: Graph-Based SLAM

Submission deadline: February, 11
Submit to: robotmappingtutors@informatik.uni-freiburg.de

Exercise: Max-Mixture Least Squares SLAM

Implement the max-mixture approximation for addressing multi-modal constraints
in the context of least-squares, graph-based SLAM. To support this task, we pro-
vide a small Octave framework (see course website). The framework contains the
following folders:

data contains several datasets, each gives the measurements of one SLAM problem

octave contains the Octave framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the
directory octave by completing the stubs:

• Implement the function in compute best mixture component.m for selecting
the most likely mode of a constraint based on the max-mixture formulation.

• Implement the function in compute global error.m for computing the total
squared error of a graph.

• Implement the function in linearize and solve.m for constructing and solv-
ing the linear approximation.

After implementing the missing parts, you can run the framework. To do that,
change into the directory octave and launch Octave. To start the main loop, type
maxmixlsSlam. The script will produce a plot showing the positions of the robot in
each iteration. These plots will be saved in the plots directory.

1

The file 〈name of the dataset〉.png depicts the result that you should obtain after
convergence for each dataset. Additionally, the initial and the final error (

∑
i

eTi Ωiei)

for each dataset should be approximately:

dataset initial error final error

manhattan250.dat 111 6
manhattan500.dat 322 16
manhattan1000a.dat 3932 32
manhattan1000b.dat 3932 32

Use the following criterion when computing the most likely mixture component, k∗,
of a constraint:

k∗ = argmin
k

(
1

2
eTijkΩijkeijk − log(wk) +

1

2
log(|Σijk |))

Some implementation tips:

• You can use the compute error pose pose constraint.m function available
to you to compute the error vector of a pose-pose constraint.

• You can use the linearize pose pose constraint.m function available to
you to compute the Jacobian of a pose-pose constraint.

• Many of the functions in Octave can handle matrices and compute values along
the rows or columns of a matrix. Some useful functions that support this are
max, abs, sum, log, sqrt, sin, cos, and many others.

2

