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Classical Planning 
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hell heaven 

•  World deterministic 
•  State observable 



MDP-Style Planning 
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hell heaven 

•  World stochastic 
•  State observable 

[Koditschek 87, Barto et al. 89] 

•  Policy 
•  Universal Plan 
•  Navigation function 



Stochastic, Partially Observable 
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Stochastic, Partially Observable 
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Combination of Markov Decision 
Processes and Bayes Filtering 

§  Markov Decision Processes provide us with the 
optimal action given the state is known 

§  Recursive Bayes filtering provide us with an 
estimate about the current state of the system 
given all observations and actions carried out thus 
far. 

 
§  Can we extend MDPs to partially observable states 

using Recursive Bayes filtering? 
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Value Iteration 

§  Given this notation the value iteration formula is 
 
 
 
 
 
 

§  with 
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POMDPs 
§  In POMDPs we apply the very same idea as in 

MDPs. 

§  Since the state is not observable, the agent has 
to make its decisions based on the belief state 
which is a posterior distribution over states. 

§  Let b be the belief of the agent about the state 
under consideration. 

§  POMDPs compute a value function over belief 
space: 
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Problems 
§  Each belief is a probability distribution, thus, 

each value in a POMDP is a function of an 
entire probability distribution. 

§  This is problematic, since probability 
distributions are continuous. 

§  Additionally, we have to deal with the huge 
complexity of belief spaces. 

§  For finite worlds with finite state, action, and 
measurement spaces and finite horizons, 
however, we can effectively represent the 
value functions by piecewise linear 
functions.  

14 



An Illustrative Example 
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The Parameters of the Example 
§  The actions u1 and u2 are terminal actions. 
§  The action u3 is a sense action that potentially 

leads to a state transition. 
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Payoff in POMDPs 

§  In MDPs, the payoff (or return) 
depended on the state of the system. 

§  In POMDPs, however, the true state is 
not exactly known. 

§  Therefore, we compute the expected 
payoff by integrating over all 
states:  
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Payoffs in Our Example (1) 
§  If we are totally certain that we are in state x1 and execute 

action u1, we receive a reward of -100 
§  If, on the other hand, we definitely know that we are in x2 

and execute u1, the reward is +100. 
§  In between it is the linear combination of the extreme values 

weighted by the corresponding probabilities 
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Payoffs in Our Example (2) 
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The Resulting Policy for T=1 

§  Given we have a finite POMDP with 
T=1, we would use V1(b) to 
determine the optimal policy. 

§  In our example, the optimal policy 
for T=1 is 

§  This is the upper thick graph in the 
diagram. 
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Piecewise Linearity, Convexity 

§  The resulting value function V1(b) is 
the maximum of the three functions 
in at each point 

§  It is piecewise linear and convex. 
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Pruning 

§  If we carefully consider V1(b), we see 
that only the first to components 
contribute.  

§  The third component can therefore 
safely be pruned away from V1(b). 
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Increasing the Time Horizon 
§  If we go over to a time horizon of T=2, the agent 

can also consider the sensing action u3.  
§  Suppose we perceive z1 for which p(z1 | x1)=0.7 and 

p(z1| x2)=0.3.  
§  Given the observation z1 we update the belief using 

Bayes rule.  
§  Thus V1(b |  z1) is given by  
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Expected Value after Measuring 

§  Since we do not know in advance what the 
next measurement will be, we have to 
compute the expected belief 
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Resulting Value Function 
§  The four possible combinations yield the 

following function which then can be simplified 
and pruned.  
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State Transitions (Prediction) 

§  When the agent selects u3 its state 
potentially changes.  

§  When computing the value function, we 
have to take these potential state 
changes into account. 
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Resulting Value Function after 
executing u3 

§  Taking also the state transitions into 
account, we finally obtain. 
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Value Function for T=2 

§  Taking into account that the agent can 
either directly perform u1 or u2, or first u3 
and then u1 or u2, we obtain (after 
pruning) 
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Graphical Representation  
of V2(b) 
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Deep Horizons and Pruning 

§  We have now completed a full backup in 
belief space. 

§  This process can be applied recursively.  
§  The value functions for T=10 and T=20 are 
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Why Pruning is Essential 
§  Each update introduces additional linear 

components to V. 
§  Each measurement squares the number of 

linear components.  
§  Thus, an unpruned value function for T=20 

includes more than 10547,864 linear functions.   
§  At T=30 we have 10561,012,337 linear functions. 
§  The pruned value functions at T=20, in 

comparison, contains only 12 linear components. 
§  The combinatorial explosion of linear components 

in the value function are the major reason why 
POMDPs are impractical for most 
applications. 
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Summary on POMDPs 

§  POMDPs compute the optimal action in 
partially observable, stochastic domains. 

§  For finite horizon problems, the resulting 
value functions are piecewise linear and 
convex.  

§  In each iteration the number of linear 
constraints grows exponentially. 

§  POMDPs so far have only been applied 
successfully to very small state spaces 
with small numbers of possible 
observations and actions.  


