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Motivation (1) 
§  Long-term monitoring of activities of daily 

living 

§  Learn typical navigation / transportation 
routines from user locations (GPS traces) 

§  Real-time tracking and predicting a user’s 
behavior 

§  Recognizing user errors 

§  Guidance for people with cognitive 
disabilities (e.g., Alzheimer's patients)  
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Motivation (2) 
§  Recognize daily activities (working, visiting 

friends, shopping, ...) 

§  Infer significant places (home, workplace, 
friends, stores, restaurants, ...) 

§  To provide location-based information 
services (e.g., searching nearby restaurants) 

§  For behavior analysis / personal guidance 
systems to help cognitively impaired people 
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Learning and Reasoning About 
Transportation Routines 

Given the data stream of a GPS device 

§  Track a user’s location 

§  Infer the user’s mode of transportation 
(foot, car, bus, ...) 

§  Predict the future movements (short-term 
and distant goals) 

§  Detect novel behavior / user errors 
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Geographic Information 
Systems 

Bus routes and bus stops 
 

Street map 
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GPS-Tracking is not Trivial 
§  GPS errors 

§  Dead zones near buildings, trees, ... 

§  Sparse measurements inside vehicles (bus) 

§  Multiple possible paths 

§  Inaccurate street map 
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Architecture 

Learning Engine 

Inference Engine 

GIS 
Database 

ü  Goals  
ü  Paths 
ü  Modes 
ü  Errors 

slide adapted from: H. Kautz 8 



Probabilistic Inference 

§  Hierarchical activity model:  
3-level dynamic Bayesian network (DBN) to 
model temporal dependencies as well as 
§  Novel behavior (top level) 
§  Navigation goal (second level) 
§  Transportation mode, location, and velocity 

(lowest level) 

§  Inference via Rao-Blackwellized particle 
filter in combination with a Kalman filter 

§  Parameter learning via Expectation-
Maximization (EM) 
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Lowest Level of the DBN 
§  Estimation of transportation mode, location, 

and velocity  
§  Use the given street map as a directed graph 
§  Define a location as: 

§  An edge/street with a direction (up/down)  
§  Distance from start vertex of edge  

§  Prediction: 
§  Move along the edges according to the velocity 

model 

§  Correction: 
§  Update the estimate based on GPS readings 
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Dynamic Bayesian Network 
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GPS reading zk-1 zk 

Edge, velocity, position xk-1 xk 

Time k-1 Time k 

Task: Estimate the posterior over the 
hidden variables 

slide credit: D. Fox 



Kalman Filtering on a Graph: 
Prediction Step 

 
Problem: Predicted location is multi-modal  

12 

e 1 

e 2 
e 3 

k-1 x 

e 0 
? 

? 

slide credit: D. Fox 



 
Problem: GPS reading is not on the graph 
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Problem: GPS reading is not on the graph 

slide credit: D. Fox 

Kalman Filtering on a Graph: 
Correction Step 
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Problem: GPS reading is not on the graph 

slide credit: D. Fox 

Kalman Filtering on a Graph: 
Correction Step 



Dynamic Bayesian Network 
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Task: Estimate the posterior over all hidden 
variables 

slide credit: D. Fox 

GPS reading 

Edge, velocity, position 
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xk-1 xk 

Time k-1 Time k 

   k-1 θ    k θ GPS association 

ek-1 ek Edge transition 



Rao-Blackwellized Particle 
Filtering (RBPF) 
§  Inference: Estimate the posterior given all 

past sensor measurements 
§  Particle filtering 

§  Approximation of the posterior using samples  
§  Supports multi-modal distributions 
§  Supports discrete variables (e.g., transp. mode)  

§  Rao-Blackwellization 
§  Sample some variables of the state space and 

solve the others analytically conditioned on 
sampled values 
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Factorization 
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Factorization 

§  Histories over the velocity, edge transition, 
and edge association, represented by 
samples in the PF 
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Factorization 

§  Histories over the velocity, edge transition, 
and edge association, represented by 
samples in the PF 

§  Location of the person on the graph, 
estimated by a KF conditioned on samples 
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Rao-Blackwellized Particle Filter 

§  Represents the posterior by a set of n 
weighted particles and applies sampling 

§  Here: Particles include distributions over 
variables, not just single samples 
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Rao-Blackwellized Particle Filter 

§  Represents the posterior by a set of n 
weighted particles and applies sampling 

§  Here: Particles include distributions over 
variables, not just single samples 

§  Each particle of the RBPF has the form 
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sampled values:  
§  edge transitions 
§  velocities 
§  edge associations 

KF for the location 



Sampling Step 

§  Sample the velocity v(i) from a mixture of 
Gaussians, which is conditioned on the 
transportation mode (described later on) 

23 image source: H. Kautz 
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Sampling Step 

§  Sample the velocity v(i) from a mixture of 
Gaussians, which is conditioned on the 
transportation mode (described later on) 

§  Sample the edge transition e(i)
 based on the 

previous position of the person and a 
learned transition model 

§  Sample the edge association θ(i) based on 
the distance between zk and the streets in 
the vicinity 
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Kalman Filter 

§  Update of the position estimate based on 
the sampled values and the measurement 

§  Prediction:  
§  Use sampled velocity to predict traveled distance 
§  Use sampled edge transition if predicted mean 

transits over a vertex 

§  Correction: 
§  Find shortest path between the prediction and 

the “snapped” measurement 
§  Apply a 1-dimensional Kalman filtering correction 

step 
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Depending on the edge association, the 
correction step moves the estimate up or 
downwards 

image source: D. Fox 
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Mode of Transportation /  
Prior Knowledge 

§  Transportation modes have different 
velocity models 

§  Buses run on bus routes (corresponding to 
edge transitions) 

§  Get on/off the bus near bus stops 

§  Switch to car near car location 
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Dynamic Bayesian Network 
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GPS reading zk-1 zk 

Edge, velocity, position xk-1 xk 

Time k-1 Time k 

mk-1 mk Transportation mode 
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Transportation Routines 

§  Goal (destination):  
§  Workplace (could also be friends, restaurant, ...) 

§  Trip segments: <start, end, transportation> 
§  Home to Bus stop A on Foot 

§  Bus stop A to Bus stop B on Bus 

§  Bus stop B to workplace on Foot 
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Hierarchical Model 
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GPS reading zk-1 zk 

Edge, velocity, position xk-1 xk 

Time k-1 Time k 

mk-1 mk Transportation mode 

tk-1 tk Trip segment 

gk-1 gk Goal 
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Remarks 
§  Note the hierarchical structure 
§  RBPF first samples the goal and trip 

segment 
§  Low-level model (w/o goal and trip 

segment) samples the edge transition solely 
based on the location and the transp. mode 

§  Hierarchical model takes the current trip 
segment into account 

§  Edge transition probabilities depend on trip 
segments, which leads to improved 
predictive capabilities 

33 



Learning the DBN Parameters 
§  Learn variable domains  

§  Goals: Locations where the user stays for long 
time 

§  Transition points: Locations with high 
transportation mode switching probability 

§  Trip segments: Connect transition points  
and goals 

§  Learn transition matrices for goals, trip 
segments, and edges via EM 

§  Unlabeled data: 30 days of one user, logged 
at 2 second intervals 
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Prediction of Goal and Path 
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goal 

Predicted 
path 

Correct goal and route predicted  
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Learned Transition Probabilities 

36 

High probability transitions:   bus   car   foot 
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Prediction Capabilities 
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Detecting Deviations 
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normal / unknown  

bk-1 bk 
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Detecting Novel Behavior 

§  RBPF: Sample novelty variable 
§  Depending on the sampled value use  

§  Hierarchical model as trained for the user  
§  Untrained, flat model (no user-specific 

preferences for motion directions or 
transportation modes) 
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Detecting User Errors 

40 Missing the bus stop 
animation: D. Fox 
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Application: Cognitive Aid 

41 image source: D. Fox 



Application: Cognitive Aid 

Dieter Fox: Activity 
Recognition From Wearable 

Sensors 42 image source: D. Fox 



Inferring Significant Places and 
Activities 
§  So far 

§  No distinction between different types of goals 
§  Fixed thresholds for the duration to extract goals 

and transition mode transfer locations 

§  However, both can have a significant 
influence on the inference quality 

§  Idea: Simultaneous identification and 
labeling of significant locations and 
estimation of activity  
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Give Semantic Meaning to Places 
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Geographic Information 
Systems 

Bus routes / bus stops 
 

Street map Restaurants / Stores 
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Activity Inference 

§  For each location (10m patch) infer the 
person’s activity (e.g., bus, foot, work, visit) 

§  Use information such as 
§  Temporal pattern: duration, time of day, etc. 
§  Geographic features: restaurant / store / bus 

stop nearby 
§  Activities of neighbor cells 

§  Additionally consider number of occurances 
of labels (e.g., home, workplace; 
summation constraints) 
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Conditional Random Fields (CRF) 

§  CRF are undirected graphical models  
§  Developed for labeling data sequences 
§  Do not assume independence between the 

observations 
§  Relationships between labels of states are 

considered and the labeling is done 
simultaneously 

§  CRF model the distribution p(x | z) 
§  Hidden states x = activities 
§  Observations z = features 
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−k 1xHidden states x 

Observations  z 

Conditional Random Fields	  
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¡  Clique	  potentials	  	  	  	  	  	  	  	  measure	  the	  “compatibility”	  among	  
the	  variables	  in	  a	  clique	  c	  

¡  Local	  potentials	  link	  states	  to	  observations	  	  

¡  Neighborhood	  potentials	  link	  states	  to	  neighboring	  states	  
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¡  Local	  potentials	  link	  states	  to	  observations	  	  

¡  Neighborhood	  potentials	  link	  states	  to	  neighboring	  states	  
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Feature Functions 

§  Typically designed by the user 
§  Extract a vector of features from variable 

values 
§  Weights represent importance of different 

features for correctly inferring the hidden 
states 

§  Weights are learned from labeled training 
data 

§  Approximation of the conditional distribution 
parameterized via the weights  
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Features for Place Labeling 
§  Temporal information: time of day / week, duration 

(binary indicator function) 

§  Average velocity (binary indicator) 

§  Geographic information: bus stop / restaurant / 
shop nearby (binary indicator) 

§  Transition relation: Adjacent activities (e.g., driving 
the car after taking the bus rather unlikely) 

§  Spatial context: Relation between place and activity 
(count + binary indicator for each combination of 
place, activity, frequency) 

§  Summation constraints: Number of places labeled 
home / workplace (count features) 
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Hierarchical CRF Model 
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…	  … 

… Activity sequence 
walk, drive, ride bus, 
work, visit, sleep,  
pickup, get on/off bus 

a1 a2 a3 a4 a5 aN-2 aN-1 aN 

Local evidence 
time, duration, 
velocity, geographic  
information 
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Hierarchical CRF Model 
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…	  … 

… Activity sequence 
walk, drive, ride bus, 
work, visit, sleep,  
pickup, get on/off bus 

a1 a2 a3 a4 a5 aN-2 aN-1 aN 

Local evidence 
time, duration, 
velocity, geographic  
information 

… 
Significant places 
home, work, bus stop,  
parking lot, friend’s home 

p1 p2 p3 pK 

Global, soft constraints 
# homes, workplaces 

w h 

slide adapted from: D. Fox 



Experimental Results 

§  GPS data from 4 different persons / 7 days 
§  40,000 GPS measurements / 10,000 activity 

segments 
§  Manually labeled activities and places  
§  Leave-one-out cross validation 
§  Maximum pseudo-likelihood for learning  

(1 minute to converge) 
§  Inference via loopy belief propagation 

(activities and places from 1 week within 1 
minute)  
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Example: Raw GPS Data 
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Activities for Each Patch 
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Places by Clustering Significant 
Activities 

58 image from: D. Fox 



Improved Place Finding 

Time Activity and transportation

8:15am - 8:34am Drive from home1 to parking lot2, walk to workplace1;

8:34am - 5:44pm Work at workplace1;

5:44pm - 6:54pm Walk from workplace1 to parking lot2, drive to friend3’s place;

6:54pm - 6:56pm Pick up/drop off at friend3’s place;

6:56pm - 7:15pm Drive from friend3’s place to other place2;

7:15pm - 9:01pm Other activity at other place2;

9:01pm - 9:20pm Drive from other place2 to friend1’s place;

9:20pm - 9:21pm Pick up/drop off at friend1’s place;

9:21pm - 9:50pm Drive from friend1’s place to home1;

9:50pm - 8:22am Sleep at home1.

Table 2: Summary of a typical day based on the inference results.
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Figure 5: (a) GPS trace (gray circles) and the associated grid cells (black circles) on the street map (lines).

(b) Accuracy of extracting significant places.

minute to 10 minutes. The data contained 51 different significant places. Figure 5(b) shows the false

positive and false negative rates achieved with the two approaches. As can seen, our approach clearly

outperforms the threshold method. Any fixed threshold is not satisfactory: low thresholds have many

false negatives, and high thresholds result in many false positives. In contrast, our model performs much

better: it only generates 4 false positives and 3 false negatives.

Labeling places and activities using models learned form others

Table 3 through Table 5 summarize the results achieved with our system on the cross-validation data.

Table 3 shows activity estimation results on the significant activities only. An instance was considered

a false positive (FP) if a significant activity was detected when none occurred, and was considered false

negative (FN) if a significant activity occurred but was labeled as non-significant such as walking. The

results are given for models with and without taking the detected places into account. More specifically,

without places are results achieved by CRF0 generated by Step 5 of the algorithm in Table 1, and

results with places are those achieved after model convergence. When the results of both approaches are

identical, only one number is given; otherwise, the first number gives results achieved with the complete

model. The table shows two main results. First, the accuracy of our approach is quite high, especially

when considering that the system was evaluated on only one week of data and was trained on only

three weeks of data collected by different persons. Second, performing joint inference over activities

and places increases the quality of inference. The reason for this is that a place node connects all the

activities occurring in its spatial area so that these activities can be labeled in a more consistent way.

These results were generated when taking a street map into account. We also performed an analysis

16

§  New model clearly outperforms the threshold 
method 59 



Summary of a Day 
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§  Most likely sequence of activities and places 



Summary 
§  Location-based activity recognition is 

possible 

§  Graph-based representations are well suited 
to compactly represent and learn typical 
behavior 

§  Hierarchical graphical models (DBN, CRF) 
powerful tools for bridging the gap between 
continuous sensor data, low-level activities, 
and abstract states  

§  Conditional Random Fields can handle high-
dimensional / dependent feature vectors 
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Further Reading 
§  L. Liao, D. Fox, H. Kautz 

Extracting Places and Activities from GPS Traces 
Using Hierarchical Conditional Random Fields 
Int. Journal of Robotics Research, 2007 

§  L. Liao, D. J. Patterson, D. Fox, H. Kautz 
Learning and Inferring Transportation Routines 
Journal Artificial Intelligence, 2007 
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