
v.1.1, Kai Arras, Jan 12, including material by Luciano Spinello and Oscar Martinez Mozos

Robotics 2

AdaBoost for People and
Place Detection

Kai Arras, Cyrill Stachniss,
Maren Bennewitz, Wolfram Burgard

Chapter Contents

  Machine Learning: A Survey

  Classification

  AdaBoost

  People Detection with Boosted Features

  Place Recognition with Boosted Features

Machine Learning: Survey
What is Machine Learning?

  Learning a model from data
  Fundamentally different than model-based

approaches where the model is derived from
domain knowledge, e.g. physics, social science

  Often it is too complex, too costly, or impossible
to model a process in “closed form” (e.g. financial
market, consumer behavior in on-line store)

  Thus, we can collect data and hope to extract the
process or pattern that explains the observed data

  Even if we are unable to describe the complete
process, an approximate model may be enough

Machine Learning: Survey
Machine Learning Taxonomy:

  Supervised Learning: Inferring a function from
labelled training data
  Examples: Classification, Regression

  Unsupervised Learning: Try to find hidden
structures in unlabeled data
  Examples: Clustering, Outlier Detection

  Semi-supervised Learning: Learn a function from
both, labelled and unlabelled data

  Reinforcement Learning: Learn how to act guided
by feedback (rewards) from the world

Machine Learning: Survey
Machine Learning Examples:

  Classification
  Support Vector Machines (SVM), naive Bayes, LDA,

Decision trees, k-nearest neighbor, ANNs, AdaBoost

  Regression
  Gaussian Processes, Least Squares Estimation, Gauss-

Newton

  Clustering
  GMMs, Hierarchical clustering, k-means

  Reinforcement Learning
  Q-Learning

Machine Learning: Survey
Machine Learning in Robotics Examples:

  Perception: people/object/speech recognition from
sensory data, learning of dynamic objects

  Modeling: human behavior modeling and analysis
  Planning: on learned cost maps, e.g. for human-

aware coverage
  Action (learning motions by imitating people, e.g.

ping-pong playing)

Machine Learning has become a very popular tool for
many robotics tasks
Can make systems adaptive to changing environments

Chapter Contents

  Machine Learning: A Survey

  Classification

  AdaBoost

  People Detection with Boosted Features

  Place Recognition with Boosted Features

Classification
  Classification algorithms are supervised algorithms

to predict categorical labels

  Differs from regression which is a supervised
technique to predict real-valued labels

Formal problem statement:

  Produce a function that maps

  Given a training set

C

label

training sample

Classification
Error types

  Precision = TP / (TP + FP)

  Recall = TP / (TP + FN)

Many more measures...

True Positive False Positive

False Negative True Negative

True value

Pr
ed

ic
te

d
va

lu
e

of

 t
he

 c
la

ss
ifi

er

T'

N
'

T N

Detected
Not Detected

Classification
Linear vs. Non-Linear Classifier, Margin

NL
L

Overfitting

  Overfitting occurs when a model begins to memorize the
training data rather than learning the underlying
relationship

  Occurs typically when fitting a statistical model with too
many parameters

  Overfitted models explain
training data perfectly but
they do not generalize!

  There are techniques to
avoid overfitting such as
regularization or cross-
validation

Classification

Chapter Contents

  Machine Learning: A Survey

  Classification

  AdaBoost

  People Detection with Boosted Features

  Place Recognition with Boosted Features

Boosting
  An ensemble technique (a.k.a. committee method)
  Supervised learning: given <samples x, labels y>

  Learns an accurate strong classifier by combining
an ensemble of inaccurate “rules of thumb”

  Inaccurate rule h(xi): “weak” classifier, weak
learner, basis classifier, feature

  Accurate rule H(xi): “strong” classifier, final
classifier

  Other ensemble techniques exist: Bagging, Voting,

Mixture of Experts, etc.

AdaBoost
  Most popular algorithm: AdaBoost

[Freund et al. 95], [Schapire et al. 99]

  Given an ensemble of weak classifiers , the
combined strong classifier is obtained by a
weighted majority voting scheme

  AdaBoost in Robotics:
[Viola et al. 01], [Treptow et al. 04], [Martínez-Mozos et al. 05], [Rottmann et al.
05] , [Monteiro et al. 06] , [Arras et al. 07]

!

h(x
i
)

!

H(x
i
)

f (xi) = !tht (xi)
t=1

T

! H (xi) = sgn f (xi)()

AdaBoost
Why is AdaBoost interesting?

1.  It tells you what the best "features" are

2.  What the best thresholds are, and

3.  How to combine them to a classifier

  AdaBoost can be seen as a principled feature
selection strategy

  Classifier design becomes science, not art

AdaBoost
  AdaBoost is a non-linear classifier

  Has good generalization properties: can be
proven to maximize the margin

  Quite robust to overfitting

  Very simple to implement

  Prerequisite:

weak classifier must be better than chance:
error < 0.5 in a binary classification problem

AdaBoost
  Possible Weak Classifiers:

  Decision stump:
Single axis-parallel partition of space

  Decision tree:
Hierarchical partition of space

  Multi-layer perceptron:
General non-linear function approximators

  Support Vector Machines (SVM):
Linear classifier with RBF Kernel

  Trade-off between diversity among weak learners
versus their accuracy. Can be complex, see literature

  Decision stumps are a popular choice

1x

2x

θ

AdaBoost: Weak Classifier
Decision stump

  Simple-most type of decision tree

  Equivalent to linear classifier defined by affine hyperplane

  Hyperplane is orthogonal to axis with which it intersects
in threshold θ

  Commonly not used on its own

  Formally,

where x is (d-dim.) training sample, j is dimension

!

h(x; j,") =
+1 x j > "

#1 else

$
%
&

AdaBoost: Weak Classifier
  Train a decision stump on weighted data

  This consists in...

Finding an optimum parameter θ*
for each dimension j =1…d and
then select the j* for which the
weighted error is minimal.

(j*, ! *) = argmin
j, ! wt (i) !(yi " ht (xi))

i =1

n

#
$
%
&

'&

(
)
&

*&

1x*θ

2x

A simple training algorithm for stumps:

 ∀ j = 1...d

 Sort samples xi in ascending order along dimension j

 ∀ i = 1...n

 Compute n cumulative sums

 end

 Threshold θj is at extremum of

 Sign of extremum gives direction pj of inequality

end

Global extremum in all d sums gives
threshold θ* and dimension j*

AdaBoost: Weak Classifier

!

wcum

j
(i) = wk yk

k=1

i

"

!

wcum

j

!

w
cum

AdaBoost: Weak Classifier
Training algorithm for stumps: Intuition

  Label y :
 red: +
 blue: –

  Assuming all

weights = 1

1x

!

"*, j* = 1

2x

!

wcum

j
(i) = wk yk

k=1

i

"

AdaBoost: Algorithm
Given the training data

1. Initialize weights

2. For t = 1,...,T
  Train a weak classifier on weighted training data

minimizing the error

  Compute voting weight of :

  Recompute weights:

3. Make predictions using the final strong classifier

!

w
t
(i) =1 n

!

h
t
(x)

!

h
t
(x) !

t
= 1
2
log((1!!

t
) !

t
)

wt+1(i) = wt (i) exp !!t yi ht (xi){ } Zt

!t = wt (i) !(yi " ht (xi))
i =1

n

#

AdaBoost: Voting Weight
  Computing the voting weight of a weak classifier
  measures the importance assigned to

!
t

! !"# !"$!"% !"& !"' !"(
!!"'

!

!"'

#

#"'

$

$"'

error

!
t
= 1
2
log((1!"

t
) "

t
)

!
t

chance: e = 0.5

!
t h

t
(x

i
)

AdaBoost: Weight Update
  Looking at the weight update step:

➔ Weights of misclassified training samples are increased
➔ Weights of correctly classified samples are decreased

  Algorithm generates weak classifier by training the
next learner on the mistakes of the previous one

  Now we understand the name: AdaBoost comes
from adaptive Boosting

exp !!t yi ht (xi){ }=
<1, yi = ht (xi)

>1, yi " ht (xi)

#
$
%

&% !

Z
t
:

Normalizer such
that wt+1 is a prob.
distribution

wt+1(i) = wt (i) exp !!t yi ht (xi){ } Zt

AdaBoost: Strong Classifier
  Training is completed...

The weak classifiers and their
voting weight are now fix

  The resulting strong classifier is

 Weighted majority voting scheme

Put your data here

Class Result {+1, -1}

h
1...T
(x)

!
1....T

!

H(x
i
) = sgn "

t
h
t
(x

i
)

t=1

T

#
$

%
& &

'

(
))

AdaBoost: Algorithm
Given the training data

1. Initialize weights

2. For t = 1,...,T
  Train a weak classifier on weighted training data

minimizing the error

  Compute voting weight of :

  Recompute weights:

3. Make predictions using the final strong classifier

!

w
t
(i) =1 n

!

h
t
(x)

!

h
t
(x) !

t
= 1
2
log((1!!

t
) !

t
)

wt+1(i) = wt (i) exp !!t yi ht (xi){ } Zt

!t = wt (i) !(yi " ht (xi))
i =1

n

#

  Training data

AdaBoost: Step-By-Step

  Iteration 1, train weak classifier 1

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
et = 0.2

Voting weight
αt = 1.39

Total error = 4

  Iteration 1, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
et = 0.2

Voting weight
αt = 1.39

Total error = 4

  Iteration 2, train weak classifier 2

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
et = 0.16

Voting weight
αt = 1.69

Total error = 5

  Iteration 2, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
et = 0.16

Voting weight
αt = 1.69

Total error = 5

  Iteration 3, train weak classifier 3

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
et = 0.25

Voting weight
αt = 1.11

Total error = 1

  Iteration 3, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
et = 0.25

Voting weight
αt = 1.11

Total error = 1

  Iteration 4, train weak classifier 4

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
et = 0.20

Voting weight
αt = 1.40

Total error = 1

  Iteration 4, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.37

Dimension
j* = 1

Weighted error
et = 0.20

Voting weight
αt = 1.40

Total error = 1

  Iteration 5, train weak classifier 5

AdaBoost: Step-By-Step

Threshold
θ* = 0.81

Dimension
j* = 1

Weighted error
et = 0.28

Voting weight
αt = 0.96

Total error = 1

  Iteration 5, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.81

Dimension
j* = 1

Weighted error
et = 0.28

Voting weight
αt = 0.96

Total error = 1

  Iteration 6, train weak classifier 6

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
et = 0.29

Voting weight
αt = 0.88

Total error = 1

  Iteration 6, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.47

Dimension
j* = 2

Weighted error
et = 0.29

Voting weight
αt = 0.88

Total error = 1

  Iteration 7, train weak classifier 7

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
et = 0.29

Voting weight
αt = 0.88

Total error = 1

  Iteration 7, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.14

Dimension, sign
j* = 2 , neg

Weighted error
et = 0.29

Voting weight
αt = 0.88

Total error = 1

  Iteration 8, train weak classifier 8

AdaBoost: Step-By-Step

Threshold
θ* = 0.93

Dimension, sign
j* = 1 , neg

Weighted error
et = 0.25

Voting weight
αt = 1.12

Total error = 0

  Iteration 8, recompute weights

AdaBoost: Step-By-Step

Threshold
θ* = 0.93

Dimension, sign
j* = 1 , neg

Weighted error
et = 0.25

Voting weight
αt = 1.12

Total error = 0

  Final Strong Classifier

AdaBoost: Step-By-Step

Total training
error = 0
(Rare in practice)

AdaBoost: Why Does it Work?
AdaBoost minimizes the training error
  Upper bound theorem: the following upper bound holds on

the training error of H

  Proof: By unravelling the weight update rule

!

1

n
i :H(xi) " yi{ } # Zt

t=1

T

$

Sochman, Matas

AdaBoost: Why Does it Work?
Ergo...
  Instead of minimizing the training error directly, its

upper bound can be minimized
  We have to minimize the normalizer

 in each training round.

This is achieved by

  Finding the optimal voting weight
  Finding the optimal weak classifier

Z
t
= w

t
(i)

i

! exp "!t yi ht (xi){ }

!

"
t

!

h
t
(x)

AdaBoost: Why Does it Work?
Optimal voting weight

Theorem:
The minimizer of the bound is

Proof:

Optimal weak classifier

Theorem:
Zt is minimized by selecting
 with minimal weighted
error

Proof:

Sochman, Matas

!

h
t
(x)

!

"
t

!

"
t

= 1
2
log((1#$

t
) $

t
)

AdaBoost in Action

AdaBoost: Summary
  Misclassified samples receive higher weight.

The higher the weight the "more attention"
a training sample receives

  Algorithm generates weak classifier by training the
next learner on the mistakes of the previous one

  AdaBoost minimizes the upper bound of the
training error by properly choosing the optimal weak
classifier and voting weight. AdaBoost can further be
shown to maximize the margin (proof in literature)

  Large impact on ML community and beyond

Chapter Contents

  Machine Learning: A Survey

  Classification

  AdaBoost

  People Detection with Boosted Features

  Place Recognition with Boosted Features

Motivation: People Detection
  People detection and tracking is a key

component for many vision systems and for all
robots in human environments:

  Human-Robot-Interaction (HRI)

  Social Robotics: social learning, learning by imitation
and observation

  Motion planning in populated environments

  Human activity and intent recognition

  Abnormal behavior detection

  Crowd behavior analysis and control

Motivation: People Detection
  Where are the people?

Motivation: People Detection
  Where are the people?

  Why is it hard?

 Range data contain little
information on people

 Hard in cluttered
environments

Motivation: People Detection
  Appearance of humans in range data changes

drastically with:
 - Body pose
 - Distance to sensor
 - Occlusion and self-occlusion

  2D range data from a SICK laser scanner

Motivation: People Detection
  Appearance of humans in 3D range data

(Velodyne scanner)

Motivation: People Detection

Motivation: People Detection
  Freiburg Main Station data set: raw data

Motivation: People Detection
  Freiburg Main Station data set: annotations

Approach
  Can we find robust features for people, legs and

groups of people in 2D range data?
  What are the best features for people detection?
  Can we find people that do not move?

Approach:

  Classifying groups of adjacent beams (segments)
  Computing a set of scalar features on these groups
  Boosting the features

Related Work
  People Tracking

 [Fod et al. 2002]
[Kleinhagenbrock et al. 2002]
[Schulz et al. 2003]
[Scheutz et al. 2004]
[Topp et al. 2005]
[Cui et al. 2005]
[Schulz 2006]
[Mucientes et al. 2006]

SLAM in dynamic env.
[Montemerlo et al. 2002]
[Hähnel et al. 2003]
[Wang et al. 2003]
...

  People detection done with very simple classifiers:
manual feature selection, heuristic thresholds

  Typically: narrow local-minima blobs that move

Segmentation
  Divide the scan into segments

Range image segmentation

Segmentation

Feature profiles

Segmented scan
Raw scan

  Method: Jump distance condition

  Size filter:
rejection of too small segments

Segmentation

Feature profiles

Segmented scan
Raw scan

  Method: Jump distance condition

  Size filter:
rejection of too small segments

Segmentation

Feature profiles

Segmented scan
Raw scan

  Method: Jump distance condition

  Size filter:
rejection of too small segments

Features
Segment

1.  Number of points

2.  Standard Deviation

3.  Mean avg. deviation from median

4.  Jump dist. to preceding segment

5.  Jump dist. to succeeding segment

6.  Width

Features
Segment

7.  Linearity

8.  Circularity

9.  Radius

rc

Features
Segment

10.  Boundary Length

11.  Boundary Regularity

12.  Mean curvature

13.  Mean angular difference

14.  Mean speed

Features
  Resulting feature signature for each segment

Training: Data Labeling
  Mark segments that correspond to people

  Either manually
or automatically

Training: Data Labeling
  Automatic labeling: obvious approach, define area

of interest

  Here: discrimination from background is relevant
information, includes spatial relation between fore-
and background. Thus: labeling is done by hand

4 m

3 m

Training
  Resulting Training Set

Segments corresponding
to people

(foreground segments)

Segments corresponding
to other objects

(background segments)

+1 -1

example1 . . . exampleN

Boosting

f#1 . . . f#14

w1 h1

wT hT

Σ

Weighted majority
vote classifier

{-1,1}
 . . .

Strong Binary Classifier

Vocabulary of features

AdaBoost: Final Strong Classifier

Experiments
Env. 1: Corridor, no clutter

Env. 2: Office, very cluttered

Experiments
Env. 1 & 2: Corridor and Office

Env. 1→2: Cross-evaluation
Trained in corridor, applied in office

Experiments
Adding motion feature (mean speed, f#14)

Experimental setup:

  Robot Herbert

  SICK 2D laser range finder,
1 degree resolution

→  Motion feature has no contribution

Experiments
  Comparison with hand-tuned classifier

 Jump distance θδ = 30 cm

 Width θw,m = 5 cm, θw,M = 50 cm

 Number of points θn = 4

 Standard deviation θσ = 50 cm

 Motion of points θv = 2 cm

People are often not detected

Experiments
Five best features:

1: Radius
of LSQ-fitted circle, robust size measure (#9)

2: Mean angular difference
Convexity measure (#13)

3/4: Jump distances
Local minima measure (#4 and #5)

5: Mad from median
Robust compactness measure (#3)

Result: Classification
T F

T

F

Chapter Contents

  Machine Learning: A Survey

  Classification

  AdaBoost

  People Detection with Boosted Features

  Place Recognition with Boosted Features

Place Labeling: Motivation
  A map is a metric and topological model

of the environment

Place Labeling: Motivation

Room

Corridor Doorway

  Wanted: semantic information about places

Scenario Example

I am in the
corridor!

User: Albert,
where are you?

Scenario Example 2
  Semantic mapping

  Human-Robot Interaction of type:
"Robot, get out of my room, go into the corridor!"

Room
Corridor

Doorway

Problem Statement
  Classification of the position of the robot using

a single observation: a 360° laser range scan

Observations

Observations

Room Room

Observations

Room Room

Observations

Room Room Doorway Doorway

Observations

Room Room Doorway Doorway

Observations

Room Room Corridor Corridor Doorway Doorway

Similar Observations

Similar Observations

Corridor Doorway

Classification Problem

Classification Problem

Classification Problem

Room Room Corridor Corridor Doorway Doorway

?

Representing the Observations
  How we represent the 360 laser beams for our

classification task?

  As a list of beams
 Problem: which beam is the first beam?

 Not invariant to rotation!

!=

Representing the Observations
  A list of scalar geometrical features of the scan

 The features are all invariant to rotation

=

Simple Features

•  Gap = d > θ
•  f = # Gaps

Minimum

•  f =Area •  f =Perimeter •  f = d

d di

N
1f =

d

•  f = d • 

d

Σ di

Simple Features
  Features of the raw beams

Simple Features
  Features of the closed polynom P(z)

made up by the beams

Multiple Classes

Room Room Corridor Corridor Doorway Doorway
1 3 2

Multiple Classes

Room Room Corridor Corridor Doorway Doorway
1 3 2

Multiple Classes
  Sequence of binary classifiers in a decision list

  Alternative to AdaBoost.M2, the multi-class variant
of AdaBoost

  Order matters, chosen to be according to error rate
  One-vs-all learning

Corridor
Classifier

Room
Classifier

H(x)=–1 H(x)=–1

H(x)=1 H(x)=1

Corridor Corridor Room Room

Doorway Doorway

Experiments
 Training (top)
 # examples:

 16045

Test (bottom)
examples:

18726
classification:
93.94%

Building 079
Uni. Freiburg

Room Room Corridor Corridor Doorway Doorway

Training (left)
 # examples:

13906

Test (right)
examples:

10445
classification:
89.52%

Building 101
Uni. Freiburg

Room Room Corridor Corridor Doorway Doorway Hallway Hallway

Experiments

Application to New Environment

Training map

Intel Research Lab
in Seattle

Application to New Environment

Training map

Intel Research Lab
in Seattle

Room Room Corridor Corridor Doorway Doorway

Summary
  People detection and place recognition phrased as

a classification problem using (geometrical and
statistical) features that characterize range data (entire
scans, groups of neighboring beams)

  AdaBoost allows for a systematic approach to
perform this task

  Both, single-frame people detection and place
recognition with around 90% accuracy

  Learned classifier clearly superior to hand-tuned
classifier

