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Machine Learning: Survey 
What is Machine Learning? 

  Learning a model from data 
  Fundamentally different than model-based 

approaches where the model is derived from 
domain knowledge, e.g. physics, social science 

  Often it is too complex, too costly, or impossible 
to model a process in “closed form” (e.g. financial 
market, consumer behavior in on-line store) 

  Thus, we can collect data and hope to extract the 
process or pattern that explains the observed data 

  Even if we are unable to describe the complete 
process, an approximate model may be enough 



Machine Learning: Survey 
Machine Learning Taxonomy: 

  Supervised Learning: Inferring a function from 
labelled training data 
  Examples: Classification, Regression 

  Unsupervised Learning: Try to find hidden 
structures in unlabeled data 
  Examples: Clustering, Outlier Detection 

  Semi-supervised Learning: Learn a function from 
both, labelled and unlabelled data 

  Reinforcement Learning: Learn how to act guided 
by feedback (rewards) from the world 



Machine Learning: Survey 
Machine Learning Examples: 

  Classification 
  Support Vector Machines (SVM), naive Bayes, LDA, 

Decision trees, k-nearest neighbor, ANNs, AdaBoost 

  Regression 
  Gaussian Processes, Least Squares Estimation, Gauss-

Newton 

  Clustering 
  GMMs, Hierarchical clustering, k-means 

  Reinforcement Learning 
  Q-Learning 



Machine Learning: Survey 
Machine Learning in Robotics Examples: 

  Perception: people/object/speech recognition from 
sensory data, learning of dynamic objects 

  Modeling: human behavior modeling and analysis 
  Planning: on learned cost maps, e.g. for human-

aware coverage 
  Action (learning motions by imitating people, e.g. 

ping-pong playing) 

Machine Learning has become a very popular tool for 
many robotics tasks 
Can make systems adaptive to changing environments 
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Classification 
  Classification algorithms are supervised algorithms 

to predict categorical labels 

  Differs from regression which is a supervised 
technique to predict real-valued labels 

 

Formal problem statement: 

  Produce a function that maps 

 
  Given a training set 
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Classification 
Error types 
 
 
 
 

 
 
 
  Precision = TP / (TP + FP) 

  Recall = TP / (TP + FN) 

Many more measures... 

True Positive False Positive 

False Negative True Negative 
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Classification 
Linear vs. Non-Linear Classifier, Margin 
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Overfitting 

  Overfitting occurs when a model begins to memorize the 
training data rather than learning the underlying 
relationship 

  Occurs typically when fitting a statistical model with too 
many parameters 

  Overfitted models explain 
training data perfectly but 
they do not generalize! 

  There are techniques to 
avoid overfitting such as 
regularization or cross- 
validation 

Classification 
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Boosting 
  An ensemble technique (a.k.a. committee method) 
  Supervised learning: given <samples x, labels y> 

  Learns an accurate strong classifier by combining 
an ensemble of inaccurate “rules of thumb” 

  Inaccurate rule h(xi): “weak” classifier, weak 
learner, basis classifier, feature 

  Accurate rule H(xi): “strong” classifier, final 
classifier 

 
  Other ensemble techniques exist: Bagging, Voting, 

Mixture of Experts, etc. 



AdaBoost 
  Most popular algorithm: AdaBoost 

[Freund et al. 95], [Schapire et al. 99]  

  Given an ensemble of weak classifiers        , the 
combined strong classifier         is obtained by a 
weighted majority voting scheme  

 

  AdaBoost in Robotics: 
[Viola et al. 01], [Treptow et al. 04], [Martínez-Mozos et al. 05], [Rottmann et al. 
05] , [Monteiro et al. 06] , [Arras et al. 07] 
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AdaBoost 
Why is AdaBoost interesting? 

1.  It tells you what the best "features" are 

2.  What the best thresholds are, and 

3.  How to combine them to a classifier 

  AdaBoost can be seen as a principled feature 
selection strategy 

  Classifier design becomes science, not art 



AdaBoost 
  AdaBoost is a non-linear classifier 

  Has good generalization properties: can be 
proven to maximize the margin 

  Quite robust to overfitting 

  Very simple to implement 

 
  Prerequisite: 

weak classifier must be better than chance: 
error < 0.5 in a binary classification problem 

 
 



AdaBoost 
  Possible Weak Classifiers: 

  Decision stump: 
Single axis-parallel partition of space 

  Decision tree: 
Hierarchical partition of space 

  Multi-layer perceptron: 
General non-linear function approximators 

  Support Vector Machines (SVM): 
Linear classifier with RBF Kernel 

  Trade-off between diversity among weak learners 
versus their accuracy. Can be complex, see literature 

  Decision stumps are a popular choice 
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AdaBoost: Weak Classifier 
Decision stump 

  Simple-most type of decision tree 

  Equivalent to linear classifier defined by affine hyperplane 

  Hyperplane is orthogonal to axis with which it intersects 
in threshold θ 

  Commonly not used on its own 

  Formally, 

where x is (d-dim.) training sample, j is dimension 
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AdaBoost: Weak Classifier 
  Train a decision stump on weighted data 

  This consists in... 

Finding an optimum parameter θ* 
for each dimension  j =1…d  and 
then select the  j*  for which the 
weighted error is minimal. 
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A simple training algorithm for stumps: 

 ∀  j  = 1...d 

 Sort samples xi  in ascending order along dimension j 

 ∀  i  = 1...n 

  Compute n cumulative sums 

 end 

 Threshold θj  is at extremum of 

 Sign of extremum gives direction pj of inequality 

end 

Global extremum in all d sums         gives 
threshold θ* and dimension j* 

 

 

AdaBoost: Weak Classifier 
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AdaBoost: Weak Classifier 
Training algorithm for stumps: Intuition 

  Label y : 
 red: + 
 blue: – 

 
  Assuming all 

weights = 1 
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AdaBoost: Algorithm 
Given the training data 

1. Initialize weights 

2. For  t  = 1,...,T 
  Train a weak classifier          on weighted training data 

minimizing the error 

 
  Compute voting weight of         : 

  Recompute weights:  

3. Make predictions using the final strong classifier 
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AdaBoost: Voting Weight 
  Computing the voting weight     of a weak classifier 
      measures the importance assigned to  
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AdaBoost: Weight Update 
  Looking at the weight update step: 

 

➔ Weights of misclassified training samples are increased 
➔ Weights of correctly classified samples are decreased 

  Algorithm generates weak classifier by training the 
next learner on the mistakes of the previous one 

  Now we understand the name: AdaBoost comes 
from adaptive Boosting 
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AdaBoost: Strong Classifier 
  Training is completed... 

The weak classifiers              and their 
voting weight          are now fix 

  The resulting strong classifier is 

 Weighted majority voting scheme 

Put your data here 

Class Result {+1, -1} 
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AdaBoost: Algorithm 
Given the training data 

1. Initialize weights 

2. For  t  = 1,...,T 
  Train a weak classifier          on weighted training data 

minimizing the error 

 
  Compute voting weight of         : 

  Recompute weights:  

3. Make predictions using the final strong classifier 
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  Training data 
 

AdaBoost: Step-By-Step 



  Iteration 1, train weak classifier 1 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
et = 0.2 

Voting weight 
αt = 1.39 

Total error = 4 



  Iteration 1, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
et = 0.2 

Voting weight 
αt = 1.39 

Total error = 4 



  Iteration 2, train weak classifier 2 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
et = 0.16 

Voting weight 
αt = 1.69 

Total error = 5 



  Iteration 2, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
et = 0.16 

Voting weight 
αt = 1.69 

Total error = 5 



  Iteration 3, train weak classifier 3 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
et = 0.25 

Voting weight 
αt = 1.11 

Total error = 1 



  Iteration 3, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
et = 0.25 

Voting weight 
αt = 1.11 

Total error = 1 



  Iteration 4, train weak classifier 4 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
et = 0.20 

Voting weight 
αt = 1.40 

Total error = 1 



  Iteration 4, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.37 

Dimension 
j* = 1 

Weighted error 
et = 0.20 

Voting weight 
αt = 1.40 

Total error = 1 



  Iteration 5, train weak classifier 5 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.81 

Dimension 
j* = 1 

Weighted error 
et = 0.28 

Voting weight 
αt = 0.96 

Total error = 1 



  Iteration 5, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
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  Iteration 6, train weak classifier 6 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
et = 0.29 

Voting weight 
αt = 0.88 

Total error = 1 



  Iteration 6, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.47 

Dimension 
j* = 2 

Weighted error 
et = 0.29 

Voting weight 
αt = 0.88 

Total error = 1 



  Iteration 7, train weak classifier 7 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
et = 0.29 

Voting weight 
αt = 0.88 

Total error = 1 



  Iteration 7, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.14 

Dimension, sign 
j* = 2 , neg 

Weighted error 
et = 0.29 

Voting weight 
αt = 0.88 

Total error = 1 



  Iteration 8, train weak classifier 8 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.93 

Dimension, sign 
j* = 1 , neg 

Weighted error 
et = 0.25 

Voting weight 
αt = 1.12 

Total error = 0 



  Iteration 8, recompute weights 
 

AdaBoost: Step-By-Step 

Threshold 
θ* = 0.93 

Dimension, sign 
j* = 1 , neg 

Weighted error 
et = 0.25 

Voting weight 
αt = 1.12 

Total error = 0 



  Final Strong Classifier 
 

AdaBoost: Step-By-Step 

Total training 
error = 0 
(Rare in practice) 

 

 

 



AdaBoost: Why Does it Work? 
AdaBoost minimizes the training error 
  Upper bound theorem: the following upper bound holds on 

the training error of H 

 

  Proof: By unravelling the weight update rule 
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AdaBoost: Why Does it Work? 
Ergo... 
  Instead of minimizing the training error directly, its 

upper bound can be minimized 
  We have to minimize the normalizer 
 

 
    in each training round. 
 

This is achieved by 

  Finding the optimal voting weight 
  Finding the optimal weak classifier 
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AdaBoost: Why Does it Work? 
Optimal voting weight 

Theorem: 
The minimizer of the bound is 

Proof: 

Optimal weak classifier 

Theorem: 
Zt is minimized by selecting 
        with minimal weighted 
error 

Proof: 
 

Sochman, Matas 
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AdaBoost in Action 



AdaBoost: Summary 
  Misclassified samples receive higher weight. 

The higher the weight the "more attention" 
a training sample receives 

  Algorithm generates weak classifier by training the 
next learner on the mistakes of the previous one 

  AdaBoost minimizes the upper bound of the 
training error by properly choosing the optimal weak 
classifier and voting weight. AdaBoost can further be 
shown to maximize the margin (proof in literature) 

  Large impact on ML community and beyond 
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Motivation: People Detection 
  People detection and tracking is a key 

component for many vision systems and for all 
robots in human environments: 

  Human-Robot-Interaction (HRI) 

  Social Robotics: social learning, learning by imitation 
and observation 

  Motion planning in populated environments 

  Human activity and intent recognition 

  Abnormal behavior detection 

  Crowd behavior analysis and control 



Motivation: People Detection 
  Where are the people? 



Motivation: People Detection 
  Where are the people? 

  Why is it hard? 

 Range data contain little 
information on people 

 Hard in cluttered 
environments 



Motivation: People Detection 
  Appearance of humans in range data changes 

drastically with: 
 - Body pose 
 - Distance to sensor 
 - Occlusion and self-occlusion 

 

  2D range data from a SICK laser scanner  

 



Motivation: People Detection 
  Appearance of humans in 3D range data 

(Velodyne scanner) 
 



Motivation: People Detection 



Motivation: People Detection 
  Freiburg Main Station data set: raw data 



Motivation: People Detection 
  Freiburg Main Station data set: annotations 
 



Approach 
  Can we find robust features for people, legs and 

groups of people in 2D range data? 
  What are the best features for people detection? 
  Can we find people that do not move? 

 

Approach: 

  Classifying groups of adjacent beams (segments)  
  Computing a set of scalar features on these groups 
  Boosting the features 



Related Work 
  People Tracking 

 [Fod et al. 2002] 
[Kleinhagenbrock et al. 2002] 
[Schulz et al. 2003] 
[Scheutz et al. 2004] 
[Topp et al. 2005] 
[Cui et al. 2005] 
[Schulz 2006] 
[Mucientes et al. 2006] 
 

SLAM in dynamic env. 
[Montemerlo et al. 2002] 
[Hähnel et al. 2003] 
[Wang et al. 2003] 
... 

 

 

  People detection done with very simple classifiers: 
manual feature selection, heuristic thresholds 

  Typically: narrow local-minima blobs that move 



Segmentation 
  Divide the scan into segments 

Range image segmentation 



Segmentation 

Feature profiles 

Segmented scan 
Raw scan 

  Method: Jump distance condition 

  Size filter: 
rejection of too small segments 



Segmentation 

Feature profiles 

Segmented scan 
Raw scan 

  Method: Jump distance condition 

  Size filter: 
rejection of too small segments 



Segmentation 

Feature profiles 

Segmented scan 
Raw scan 

  Method: Jump distance condition 

  Size filter: 
rejection of too small segments 



Features 
Segment 

1.  Number of points 

2.  Standard Deviation 

3.  Mean avg. deviation from median 

4.  Jump dist. to preceding segment 

5.  Jump dist. to succeeding segment 

6.  Width 



Features 
Segment 

7.  Linearity 

8.  Circularity 

9.  Radius 

rc 



Features 
Segment 

10.  Boundary Length 

11.  Boundary Regularity 

12.  Mean curvature 

13.  Mean angular difference 

14.  Mean speed 



Features 
  Resulting feature signature for each segment 



Training: Data Labeling 
  Mark segments that correspond to people 

  Either manually 
or automatically 

 



Training: Data Labeling 
  Automatic labeling: obvious approach, define area 

of interest 

  Here: discrimination from background is relevant 
information, includes spatial relation between fore- 
and background. Thus: labeling is done by hand  

4 m 

3 m 



Training 
  Resulting Training Set 

Segments corresponding 
to people 

(foreground segments) 

Segments corresponding 
to other objects 

(background segments) 

+1 -1 



example1 .  .  . exampleN 

Boosting 

f#1 .  .  . f#14 

w1 h1 

wT hT 

Σ 

Weighted majority 
vote classifier 

{-1,1} 
  .   .   .   

Strong Binary Classifier 

Vocabulary of features 

AdaBoost: Final Strong Classifier 



Experiments 
Env. 1: Corridor, no clutter 

Env. 2: Office, very cluttered 



Experiments 
Env. 1 & 2: Corridor and Office 

Env. 1→2: Cross-evaluation 
Trained in corridor, applied in office 



Experiments 
Adding motion feature (mean speed, f#14) 

Experimental setup: 

  Robot Herbert 

  SICK 2D laser range finder, 
1 degree resolution 

→   Motion feature has no contribution 



Experiments 
  Comparison with hand-tuned classifier 

 Jump distance  θδ = 30 cm 

 Width  θw,m = 5 cm, θw,M = 50 cm 

 Number of points  θn = 4 

 Standard deviation  θσ = 50 cm 

 Motion of points  θv = 2 cm 

People are often not detected 



Experiments 
Five best features: 

1: Radius 
of LSQ-fitted circle, robust size measure (#9) 

2: Mean angular difference  
Convexity measure (#13) 

3/4:  Jump distances 
Local minima measure (#4 and #5) 

5: Mad from median 
Robust compactness measure (#3) 



Result: Classification 
T F 

T 

F 
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Place Labeling: Motivation 
  A map is a metric and topological model 

of the environment 



Place Labeling: Motivation 

Room 

Corridor Doorway 

  Wanted: semantic information about places 



Scenario Example 

I am in the 
corridor! 

User: Albert, 
where are you? 



Scenario Example 2 
  Semantic mapping 

  Human-Robot Interaction of type: 
"Robot, get out of my room, go into the corridor!" 

Room 
Corridor 

Doorway 



Problem Statement 
  Classification of the position of the robot using 

a single observation: a 360° laser range scan 



Observations 



Observations 

Room Room 



Observations 

Room Room 



Observations 

Room Room Doorway Doorway 



Observations 

Room Room Doorway Doorway 



Observations 

Room Room Corridor Corridor Doorway Doorway 



Similar Observations 



Similar Observations 

Corridor Doorway 



Classification Problem 



Classification Problem 



Classification Problem 

Room Room Corridor Corridor Doorway Doorway 

? 



Representing the Observations 
  How we represent the 360 laser beams for our 

classification task? 

  As a list of beams 
 Problem: which beam is the first beam? 

 
 Not invariant to rotation! 

 

!= 



Representing the Observations 
  A list of scalar geometrical features of the scan 

 

 The features are all invariant to rotation 

= 



Simple Features 

•  Gap = d > θ 
•  f = # Gaps 

Minimum 

•  f =Area •  f =Perimeter •  f = d 

d di 

N
1f =

d

•  f = d •   

d 

Σ di  



Simple Features 
  Features of the raw beams 



Simple Features 
  Features of the closed polynom P(z) 

made up by the beams 



Multiple Classes 

Room Room Corridor Corridor Doorway Doorway 
1 3 2 



Multiple Classes 

Room Room Corridor Corridor Doorway Doorway 
1 3 2 



Multiple Classes 
  Sequence of binary classifiers in a decision list 

 

  Alternative to AdaBoost.M2, the multi-class variant 
of AdaBoost 

  Order matters, chosen to be according to error rate 
  One-vs-all learning 

Corridor  
Classifier 

Room  
Classifier 

H(x)=–1 H(x)=–1 

H(x)=1 H(x)=1 

Corridor Corridor Room Room 

Doorway Doorway 



Experiments 
 Training (top) 
 # examples: 

 16045 

Test (bottom) 
# examples:  

18726 
classification: 
93.94% 

Building 079 
Uni. Freiburg 

Room Room Corridor Corridor Doorway Doorway 



Training (left) 
 # examples: 

13906 

Test (right) 
# examples:  

10445 
classification: 
89.52% 

Building 101 
Uni. Freiburg 

Room Room Corridor Corridor Doorway Doorway Hallway Hallway 

Experiments 



Application to New Environment 

Training map 

Intel Research Lab 
in Seattle 



Application to New Environment 

Training map 

Intel Research Lab 
in Seattle 

Room Room Corridor Corridor Doorway Doorway 



Summary 
  People detection and place recognition phrased as 

a classification problem using (geometrical and 
statistical) features that characterize range data (entire 
scans, groups of neighboring beams) 

  AdaBoost allows for a systematic approach to 
perform this task 

  Both, single-frame people detection and place 
recognition with around 90% accuracy 

  Learned classifier clearly superior to hand-tuned 
classifier 


