Advanced Techniques for Mobile Robotics

Bag-of-Words Models & Appearance-Based Mapping

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Motivation: Analogy to Documents

Object Classification / Scene Recognition

 Analogy to documents: The content can be inferred from the frequency of words

bag of "visual words"

object

image source: L. Fei-Fei

Bag of Visual Words

Visual words = independent features

features

image source: L. Fei-Fei

Bag of Visual Words

- Visual words = independent features
- Construct a dictionary of representative words

codewords dictionary

Bag of Visual Words

. Fei-Fei

- Visual words = independent features
- Construct a dictionary of representative words
- Represent the images based on a histogram of word occurrences (bag)

Overview

image representation

&

slide adapted from: L. Fei-Fei

Feature Detection and Representation

detected features in a set of training images (intensity changes)

slide adapted from: L. Fei-Fei

example patch

Feature Detection and Representation

descriptor vectors (e.g., SIFT/SURF, consider local orientations of gradients)

detected features in a set of training images (intensity changes)

example patch

slide adapted from: L. Fei-Fei

9

Learning the Dictionary

slide adapted from: L. Fei-Fei

Learning the Dictionary

slide adapted from: L. Fei-Fei

Example Codewords Dictionary

Fei-Fei et al. 2005

Example Image Representation

 Build the histogram by assigning each detected feature to the closest entry in the codebook

slide adapted from: L. Fei-Fei

Properties Bag-of-Words

- Compact summary of content
- Flexible to viewpoint, deformations
- Can be used for object / image classification by comparing the histograms (and applying some discriminative method)
- Ignores geometry
- Unclear how to choose optimal vocabulary
 - Too small: Words not representative of all patches
 - Too large: Artifacts, over-fitting

Appearance-Based Mapping with a Bag-of-Words Approach

Based on M. Cummins & P. Newman

FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance Int. Journal of Robotics Research, 2008

Appearance-only SLAM at Large Scale with FAB-MAP 2.0 Int. Journal of Robotics Research, 2010

 Slides based on a presentation of Mark Cummins at R:SS 2009

Motivation: Failure of Metric SLAM

Appearance information can help to recover the pose estimate where metric approaches may fail 17

Appearance-Based Mapping (1)

- Recognize places based on visual appearance, even under difficult conditions
- Decide whether observations result from places already in the map, or from new, unseen places
- Difficult problem since different places may have similar visual appearance (and vice versa)
- Apply a bag-of-words approach
- Extension: Take into account that certain combinations of words co-occur

Appearance-Based Mapping (2)

- Parameterize the world as a set of discrete locations
- Estimate their positions in an appearance space
- Distinctive places can be recognized even after unknown motion (loop-closure)

Learning the Visual Vocabulary

TH .

SURF

Clustering in Feature Space

Bag-of-Words Representation

Inference in FAB-MAP

map:

current observation:

Z = [0 1 0 1 1 ...]

 $Z_k = \{z_1, \ldots, z_{|v|}\}$

observation at time k, |v| = number of words in dictionary

Environment Representation

 Collection of a set of discrete and disjoint locations at time k:

$$\mathcal{L}^k = \{L_1, \dots, L_{n_k}\}$$

Place appearance model: belief about the existence of scene elements (words)

$$\{p(e_1 = 1 | L_i), \dots, p(e_{|v|} = 1 | L_i)\}$$

 Detector model relates feature existence and feature detection

$$\mathcal{D}: \quad \begin{cases} p(z_i = 1 | e_i = 0), & \text{false positive probability.} \\ p(z_i = 0 | e_i = 1), & \text{false negative probability.} \end{cases}$$

observation existenc

Graphical Model

Correlations of Word Occurrence

 Visual words are not independent, instead they tend to co-occur

Capturing Correlations

 Learn a tree-structured Bayesian network to capture dependencies between words (Chow Liu algorithm)

$$Z = \{z_1, \dots, z_N\}$$

$$p(Z) = p(z_r) \prod_{i=1}^{N} p(z_i | z_{p_i})$$
root
parent of z_i

Graphical Model

Inference in FAB-MAP

Observation Likelihood

Chow Liu tree for the joint distribution

$$p(Z_k|L_i) = p(z_r|L_i) \prod_{q=2}^{|v|} p(z_q|z_{p_q}, L_i)$$

Observation Likelihood

Chow Liu tree for the joint distribution

$$p(Z_k|L_i) = p(z_r|L_i) \prod_{q=2}^{|v|} p(z_q|z_{p_q}, L_i)$$

$$p(z_q|z_{p_q}, L_i) = \sum_{s_{e_q} \in \{0,1\}} p(z_q|e_q = s_{e_q}, z_{p_q}) p(e_q = s_{e_q}|L_i)$$

Observation Likelihood

Chow Liu tree for the joint distribution

Location Prior

Use a simple motion model to compute

$$p(L_i | \mathcal{Z}^{k-1})$$

- If the vehicle is at location *i* at time *k*-1, it is likely to be at one of the topologically adjacent locations at time *t*
- In case of unknown neighbors, part of the probability mass is assigned to a "new place" node (no odometry is used)

Normalization

 We need to evaluate the normalizing term since the current observation might come from a location not yet contained in the map

$$\begin{split} p(Z_k|\mathcal{Z}^{k-1}) &= \sum_{all \ L} p(Z_k|L) p(L|\mathcal{Z}^{k-1}) \\ p(Z_k|\mathcal{Z}^{k-1}) &= \sum_{m \in M} p(Z_k|L_m) p(L_m|\mathcal{Z}^{k-1}) + \sum_{n \in \overline{M}} p(Z_k|L_n) p(L_n|\mathcal{Z}^{k-1}) \\ & \swarrow \\ \\ & \texttt{mapped places} \\ \end{split}$$

approximate by sampling:

Updating Place Models

- Maximum likelihood data association after each observation
- Update the relevant place appearance model

$$\{p(e_1 = 1 | L_i), \dots, p(e_{|v|} = 1 | L_i)\}$$

Each component is updated according to

 prior

$$p(e_j = 1 | L_j, \mathcal{Z}^k) = \frac{p(Z_k | e_i = 1) p(e_i = 1 | L_j, \mathcal{Z}^{k-1})}{p(Z_k | L_j)}$$

Bayes' rule + two assumption: observations independent given place detection errors independent of location

Experimental Results

- 2k images, collected 30m apart, for training (vocabulary + Chow Liu tree)
- Vocabulary: 100k words
- 1000 km test data set: 103k images, ~8m apart, with 50k loop closures, 21h driving
- Robust matching even when place appearance changes
- Correct loop closures under perspective changes, rotation, lighting changes, dynamic objects,

Perspective Change

Rotation

Lighting Change

Dynamic Objects

Perceptual Aliasing Correctly Rejected

Highest Confidence False Positives

Loop Closure (70 km Data Set)

Trajectory from GPS data

Timing Performance

Mean computation times:

- Inference: 25 ms for 100k locations
- SURF detection + quantization: 483 ms

Visual Odometry

Visual Odometry with Loop Closure Constraints

Combined Result

Multi-Session Mapping

Multi-Session Mapping

Summary

- Appearance-only navigation
- Bag-of-words approach to recognize places
- Chow Liu tree to capture dependencies
- Probabilistic framework can deal with perceptual aliasing and new place detection
- Successfully detects loops in challenging outdoor environments
- Fast enough for online loop closure detection
- Can be used to complement metric SLAM

Further Reading

• M. Cummins & P. Newman

FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance Int. Journal of Robotics Research, 2008

Appearance-only SLAM at Large Scale with FAB-MAP 2.0

Int. Journal of Robotics Research, 2010