Advanced Techniques for Mobile Robotics

Clustering & EM

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Motivation

- Common technique for statistical data analysis to detect structure (machine learning, data mining, pattern recognition, ...)
- Classification of a data set into subsets (clusters)
- Efficient representation of data

Example Application: Image Segmentation / Data Compression

- Each pixel is a point in the RGB space
- Represent the image using only K colors
- The corresponding colors are obtained by a clustering of the input data

Original image

image source: C. M. Bishop

Clustering

- Needed: Distance function (similarity / dissimilarity), e.g., Euclidian distance
- Objectives
 - Maximize inter-clusters distance
 - Minimize intra-clusters distance
- The quality of the clustering result depends on
 - The clustering algorithm
 - The distance function
 - The application (data)

Types of Clustering

- Hierarchical Clustering
 - Agglomerative Clustering (bottom up)
 - Divisive Clustering (top-down)
- Partitional Clustering
 - K-Means Clustering (hard & soft)
 - Gaussian Mixture Models

Hierarchical Clustering

- Connects data points to clusters / separates points from clusters based on their distance
- In addition to the distance function, one also needs to specify the linkage criterion (which clusters to merge / separate)
- Produces a hierarchy of partitionings one has to choose from

Example: Divisive Clustering

- Data generated from three Gaussians
- Single-linkage (distance between the two closest elements of different clusters)
- Currently, 35 clusters
- The biggest cluster starts fragmenting into smaller parts

Weaknesses Hierarchical Clustering

- Once connected, clusters cannot be partitioned again (agglomerative clustering)
- The order in which clusters are formed is crucial (depends on the linkage criterion)
- Sensitive to outliers (either leads to additional clusters or can cause other clusters to merge)
- Unclear which partitioning to choose
- Too slow for large data sets

K-Means Clustering

- Clusters are represented by centroids, which do not need to be members of the cluster
- Partitions the data into k clusters
 (k needs to be specified by the user!)
- Objective: Find the k cluster centers and assign the data points to the nearest cluster, such that the squared distances from the cluster centroids are minimized

K-Means Clustering Algorithm (Informally)

- Iterative procedure
- Initialization: Choose k arbitrary centroids (cluster means)
- Repeat until convergence
 - Assign each data point to the closest centroid
 - Adjust the centroids of the clusters to the mean of the data points assigned to them

K-Means Clustering (More Formally)

- Find k reference vectors (centroids) $m_j, j = 1, \ldots, k$ that best explain the data **X**
- Assign data vectors to the nearest (most similar) reference vector *m_i*

$$\|\mathbf{x}^t - \mathbf{m}_i\| = \min_j \|\mathbf{x}^t - \mathbf{m}_j\|$$

r-dimensional data vector in a real-valued space

reference vector (centroid / mean)

K-Means Clustering

Optimize the following objective function:

$$R = \sum_{t} \sum_{i} b_{i}^{t} \|\mathbf{x}^{t} - \mathbf{m}_{i}\|^{2}$$

with $b_{i}^{t} = \begin{cases} 1 & \text{if } i = \arg\min_{j} \|\mathbf{x}^{t} - \mathbf{m}_{j}\| \\ 0 & \text{otherwise} \end{cases}$

- Find reference vectors that maximize *R*
- Taking the derivative with respect to m_i and setting it to 0 leads to:

$$\mathbf{m}_i = \frac{\sum_{t} b_i^t \mathbf{x}^t}{\sum_{t} b_i^t}$$

K-Means Algorithm

cluster memberships

Initialize $\boldsymbol{m}_i, i = 1, \dots, k$, for example, to k random \boldsymbol{x}^t Repeat For all $\boldsymbol{x}^t \in \mathcal{X}$ $b_i^t \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^t - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^t - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases}$ For all $\boldsymbol{m}_i, i = 1, \ldots, k$ $oldsymbol{m}_i \leftarrow \sum_t b_i^t oldsymbol{x}^t / \sum_t b_i^t$ Until \boldsymbol{m}_i converge Assign each \mathbf{x}^t to Re-compute the cluster the closest cluster means \boldsymbol{m}_i using the current

K-Means Example (1)

image source: Alpaydin, Introduction to Machine Learning

K-Means Example (2)

image source: Bishop, Pattern Recognition and Machine Learning

Strength of K-Means

- Easy to understand and to implement
- Efficient O(nkt)
 n = #iterations, k = #clusters, t = #data points
- Converges quickly to a local optimum
- Most popular clustering algorithm

Weaknesses of K-Means

- User needs to specify #clusters (k)
 Later introduced: Method to estimate k
- Sensitive to initialization
 Strategy: Use different seeds
- Sensitive to outliers since all data points contribute equally to the mean Strategy: Try to eliminate outliers
- Prefers clusters of approximately similar size (objects are assigned to the nearest centroid)

Example: Problem with K-Means

- Dataset generated from three Gaussians
- K-means prefers equally sized clusters

Soft Assignments

- So far, each data point was assigned to exactly one cluster
- A variant called soft k-means allows for making fuzzy assignments
- Data points are assigned to clusters with certain probabilities

Soft K-Means (Informally)

- Choose k clusters centroids
- Assign randomly to each data point probabilities for being in the clusters
- Repeat until convergence
 - Compute the centroid for each cluster taking into account the membership probabilities
 - For each data point, re-compute its membership probabilities based on the distance to the centroids

Soft K-Means Clustering (1)

 Each data t point is given a soft assignment to all means k:

$$c_{tk} = \frac{\exp(-\beta ||\mathbf{x}_t - \mathbf{m}_k||^2)}{\sum_i \exp(-\beta ||\mathbf{x}_t - \mathbf{m}_i||^2)}, \ \sum_k c_{tk} = 1$$

β is a "stiffness" parameter and plays a crucial role

Soft K-Means Clustering (2)

 Soft k-means optimizes the following objective function:

$$J = \sum_{t} \sum_{k} c_{tk} \|\mathbf{x}_t - \mathbf{m}_k\|^2$$

Accordingly, the means are updated:

$$\mathbf{m}_k = \frac{\sum_t c_{tk} \mathbf{x}_t}{\sum_t c_{tk}}$$

Example: Hard vs Soft K-Means

Properties of Soft K-Means Clustering

- Points between clusters get assigned to both of them (accounts for uncertainty)
- Additional parameter β
- Same problem as k-means: Local optimum; the result depends on the initial choice of membership probabilities
- Extension: Clusters with varying shapes can be treated in a probabilistic framework (mixtures of Gaussians, see next lecture)

Similarity of Soft K-Means and Expectation Maximization (EM)

- EM is a general method for finding the maximum-likelihood estimate of the parameters of the underlying distribution
- In case of Gaussian distributions, the parameters are the means (and variances)
- EM finds the model parameters that maximize the likelihood of the given, incomplete data

Expectation Maximization (EM) Basic Definitions

- Two sets of random variables
 - Observed data set d
 - Hidden variables c
 (assignment of data points to clusters)
- Since the joint likelihood (incl. the hidden variables!) cannot be determined, we work with its expectation

Expectation (Expected Value)

- ... is the integral of the random variable with respect to its probability measure
- For discrete random variables this is equivalent to the probability-weighted sum of the possible values

•
$$E[x] = E_x[x] = \int_x xp(x) dx$$

• $E_{x,y}[x] = \int xp(x,y) dx dy$

$$L_{x,y}[x] = \int_{x,y} xp(x,y)$$

•
$$E_{x|y}[x] = E_x[x|y] = E_x[x|y] = \int_x xp(x \mid y) dx$$

•
$$E_{x|y}[g(x)] = E_x[g(x) | y] = \int_x g(x)p(x | y) dx$$

Expected Data Likelihood

- Observed data $d = \{d_1, \ldots, d_I\}$
- Correspondence variables (hidden) $c = \{c_1, \dots, c_I\}$
- Joint likelihood of d and c given model θ $P(d, c \mid \theta) = \prod_{i=1}^{I} P(d_i, c_i \mid \theta)$ $\ln P(d, c \mid \theta) = \sum_{i=1}^{I} \ln P(d_i, c_i \mid \theta)$
- Since the values of c are hidden, optimize the expected value of the log likelihood

$$E_c[\ln P(d,c \mid \theta) \mid \theta, d] = E_c[\sum_{i=1}^{r} \ln P(d_i,c_i \mid \theta) \mid \theta, d]$$

28

Expectation Maximization

- Optimizing the expected log likelihood is usually not easy
- EM iteratively maximizes log likelihood functions
- EM generates a sequence of models $\theta^{[1]}, \theta^{[2]}, \ldots$ of increasing log likelihood
- EM converges to a (local) optimum

Expectation Maximization

- Use so-called Q-function to find the model with the maximum expected data likelihood
- Define the expected data log likelihood as a function of $\boldsymbol{\theta}$

$$Q(\theta \mid \theta^{[j]}) = E_c[\ln P(d, c \mid \theta) \mid \theta^{[j]}, d]$$

new parameters wecurrent parameter estimatesoptimize to increase Qused to evaluate the expectation

Expected value: $E_c[\ln P(d, c \mid \theta) \mid \theta^{[j]}, d] = \int_c \ln P(d, c \mid \theta) P(c \mid \theta^{[j]}, d) dc$

30

Expectation Maximization

$$Q(\theta \mid \theta^{[j]}) = E_c[\ln P(d, c \mid \theta) \mid \theta^{[j]}, d]$$

Expectation (E) step

- Compute expected values for the hidden variables c given the current model $\theta^{[j]}$ and the observed data d

Maximization (M) step

Maximize the expected likelihood

$$\theta^{[j+1]} = \operatorname{argmax}_{\theta'} Q(\theta' \mid \theta^{[j]})$$

Iterating E and M Steps

Properties of EM

- Each iteration is guaranteed to increase the data log likelihood
- EM is guaranteed to converge to a local maximum of the likelihood function

Application: Trajectory Clustering

How to learn typical motion patterns of people from observations?

Application: Trajectory Clustering

Input: Set of trajectories d₁,...,d_I

 $d_{i} = \{x_{i}^{1}, x_{i}^{2}, \dots, x_{i}^{T}\}$

What we are looking for

- Clustering of similar trajectories into motion patterns θ₁, ...,θ_M (Note: From now on M = #clusters)
- Binary correspondence variables c_{im} indicating which trajectory d_i belongs to which motion pattern θ_m

Problem:

How can we estimate c_{im} ?

Motion Patterns

- Use T Gaussians with fixed variance to represent each motion pattern (= model)
- If we knew the values of the c_{im}, the computation of the motion patterns would be easy
- But: These values are hidden
- Use EM to compute
 - Expected values for the c_{im}
 - The model θ (i.e., the set of motion patterns) which has the highest expected data likelihood

Likelihood of Trajectory d_i given Motion Pattern $\theta_m = \{\theta_m^1, \dots, \theta_m^T\}$

$$P(d_i \mid \theta_m) = \prod_{t=1}^T P(x_i^t \mid \theta_m^t)$$
$$= \prod_{t=1}^T \exp(-\frac{1}{2\sigma^2} ||x_i^t - \mu_m^t||^2)$$

likelihood that the person is at location x_i^t after t observations given it is engaged in motion pattern θ_m with the means $\{\mu_m^1, \dots, \mu_m^T\}$

Data Likelihood

 Joint likelihood of a single trajectory and its correspondence vector

$$P(d_i, c_i \mid \theta) = \prod_{t=1}^T \prod_{m=1}^M \exp(-\frac{1}{2\sigma^2} c_{im} \|x_i^t - \mu_m^t\|^2)$$

Note: c_{im} =1 for exactly one m

Expected log likelihood

$$E_{c}[\ln P(d, c \mid \theta) \mid \theta, d] = E_{c}[\sum_{i=1}^{I} \ln P(d_{i}, c_{i} \mid \theta) \mid \theta, d]$$

= $E_{c}\left[\sum_{i=1}^{I} \ln \prod_{t=1}^{T} \prod_{m=1}^{M} \exp(-\frac{1}{2\sigma^{2}}c_{im}||x_{i}^{t} - \mu_{m}^{t}||^{2}) \mid \theta, d\right]$
= $E_{c}\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{I} \sum_{t=1}^{T} \sum_{m=1}^{M} c_{im}||x_{i}^{t} - \mu_{m}^{t}||^{2} \mid \theta, d\right]$

Expected Data Likelihood

$$E_{c}[\ln P(d,c \mid \theta) \mid \theta, d] = \dots$$

$$= E_{c} \Big[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{I} \sum_{t=1}^{T} \sum_{m=1}^{M} c_{im} \|x_{i}^{t} - \mu_{m}^{t}\|^{2} \mid \theta, d \Big]$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{I} \sum_{t=1}^{T} \sum_{m=1}^{M} E_{c}[c_{im} \mid \theta, d] \|x_{i}^{t} - \mu_{m}^{t}\|^{2}$$

$$= -\frac{1}{2\sigma^{2}} \sum_{i=1}^{I} \sum_{m=1}^{M} E[c_{im} \mid \theta, d] \sum_{t=1}^{T} \|x_{i}^{t} - \mu_{m}^{t}\|^{2}$$

Expectation is a linear operator

Q-Function

$$Q(\theta' \mid \theta) = -\frac{1}{2\sigma^2} \sum_{i=1}^{I} \sum_{m=1}^{M} E[c_{im} \mid \theta, d] \sum_{t=1}^{T} ||x_i^t - \mu_m'^t||^2$$

E-Step: Compute the Expectations Given the Current Model $\theta^{[j]}$

 $E[c_{im} \mid \theta^{\lfloor j \rfloor}, d] = P(c_{im} \mid \theta^{\lfloor j \rfloor}, d)$ Note: c_{im} can be 0 or 1 $= P(c_{im} \mid \theta^{[j]}, d_i)$ Bayes' $= \eta P(d_i \mid c_{im}, \theta^{[j]}) P(c_{im} \mid \theta^{[j]})$ uniform prior $= n'P(d_i \mid \theta_m^{[j]})$ $= \eta' \prod_{j=1}^{T} \exp(-\frac{1}{2\sigma^2} \|x_i^t - \mu_m^{t[j]}\|^2)$ t=1normalizer likelihood that the *i*-th trajectory belongs to the m-th model component

M-Step: Maximize the Expected Likelihood

 $\begin{aligned} \theta^{[j+1]} &= \underset{\theta'}{\operatorname{argmax}} Q(\theta' \mid \theta^{[j]}) \\ &= \underset{\theta'}{\operatorname{argmax}} \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^{I} \sum_{m=1}^{M} E[c_{im} \mid \theta^{[j]}, d] \sum_{t=1}^{T} \|x_i^t - \mu_m'^t\|^2 \right\} \\ &= \underset{\theta'}{\operatorname{argmin}} \left\{ \sum_{i=1}^{I} \sum_{m=1}^{M} E[c_{im} \mid \theta^{[j]}, d] \sum_{t=1}^{T} \|x_i^t - \mu_m'^t\|^2 \right\}. \end{aligned}$

Compute partial derivative with respect to μ_m^t

M-Step: Maximize the Expected Likelihood

$$\sum_{i=1}^{I} E[c_{im} \mid \theta^{[j]}, d] \cdot (-2) \cdot (x_i^t - \mu_m^{t[j+1]}) \stackrel{!}{=} 0 \iff$$

$$\sum_{i=1}^{I} E[c_{im} \mid \theta^{[j]}, d] x_i^t \stackrel{!}{=} \sum_{i=1}^{I} E[c_{im} \mid \theta^{[j]}, d] \mu_m^{t[j+1]} \iff$$

$$\mu_m^{t[j+1]} \stackrel{!}{=} \frac{\sum_{i=1}^{I} E[c_{im} \mid \theta^{[j]}, d] x_i^t}{\sum_{i=1}^{I} E[c_{im} \mid \theta^{[j]}, d]}$$

This is the mean update of soft k-means

EM Application Example: 9 Trajectories of 3 Motion Patterns

EM: Example (step 2)

EM: Example (step 3)

 θ^3 :

EM: Example (step 4)

EM: Example (step 5)

EM: Example (step 6)

 θ^6 :

EM: Example (step 7)

 θ^7 :

EM: Example (step 8)

EM: Example (step 9)

Estimating the Number of Model Components Greedily

After convergence of the EM check whether the model can be improved

- by introducing a new model component for the trajectory which has the lowest likelihood or
- by eliminating the model component which has the lowest utility.

Select model θ which has the **highest evaluation** $E_c[\log P(d, c \mid \theta) \mid \theta, d] - \frac{M}{2} \log I$ where M =#model components, I =#trajectories Bayesian Information Criterion [Schwarz, `78]

Application Example

Learned Motion Patterns

Prediction of Human Motion

learned motion patterns

motion prediction

situation

anticipation

Prediction of Human Motion

learned motion patterns

motion prediction

Summary

- K-means is the most popular clustering algorithm
- It is efficient and easy to implement
- Converges to a local optimum
- A variant of hard k-means exists allowing soft assignments
- Soft k-means corresponds to the EM algorithm which is a general optimization procedure

Further Reading

E. Alpaydin

Introduction to Machine Learning

C.M. Bishop

Pattern Recognition and Machine Learning

J. A. Bilmes

A Gentle Tutorial of the EM algorithm and its Applications to Parameter Estimation (Technical report)