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Motivation 

§  Common technique for statistical data 
analysis to detect structure  
(machine learning, data mining, pattern 
recognition, …)  

§  Classification of a data set into subsets 
(clusters) 

§  Efficient representation of data 



Example Application: Image 
Segmentation / Data Compression 
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§  Each pixel is a point in the RGB space 
§  Represent the image using only K colors 
§  The corresponding colors are obtained by a 

clustering of the input data 

image source: C. M. Bishop 
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Clustering  

§  Needed: Distance function (similarity / 
dissimilarity), e.g., Euclidian distance 

§  Objectives 
§  Maximize inter-clusters distance  
§  Minimize intra-clusters distance 

§  The quality of the clustering result 
depends on 
§  The clustering algorithm 
§  The distance function 
§  The application (data) 
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Types of Clustering 

§  Hierarchical Clustering 
§  Agglomerative Clustering (bottom up) 

§  Divisive Clustering (top-down) 

§  Partitional Clustering 
§  K-Means Clustering (hard & soft) 

§  Gaussian Mixture Models 



Hierarchical Clustering 
§  Connects data points to clusters / separates 

points from clusters based on their distance 

§  In addition to the distance function, one 
also needs to specify the linkage criterion 
(which clusters to merge / separate) 

§  Produces a hierarchy of partitionings one 
has to choose from  
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Example: Divisive Clustering 
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§  Data generated from 
three Gaussians 

§  Single-linkage (distance 
between the two closest 
elements of different 
clusters) 

§  Currently,  35 clusters  

§  The biggest cluster starts 
fragmenting into smaller 
parts 

image source: wikipedia 



Weaknesses  
Hierarchical Clustering 
§  Once connected, clusters cannot be 

partitioned again (agglomerative clustering) 

§  The order in which clusters are formed is 
crucial (depends on the linkage criterion) 

§  Sensitive to outliers (either leads to 
additional clusters or can cause other 
clusters to merge) 

§  Unclear which partitioning to choose 

§  Too slow for large data sets 
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K-Means Clustering  

§  Clusters are represented by centroids, which 
do not need to be members of the cluster 

§  Partitions the data into k clusters  
(k needs to be specified by the user!) 

§  Objective: Find the k cluster centers and 
assign the data points to the nearest 
cluster, such that the squared distances 
from the cluster centroids are minimized 
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§  Iterative procedure 

§  Initialization: Choose k arbitrary centroids 
(cluster means) 

§  Repeat until convergence 

§  Assign each data point to the closest centroid 

§  Adjust the centroids of the clusters to the mean 
of the data points assigned to them 
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K-Means Clustering Algorithm 
(Informally) 
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K-Means Clustering 
(More Formally) 
§  Find k reference vectors (centroids)  

       that best explain the data X 

§  Assign data vectors to the nearest (most 
similar) reference vector mi  

r-dimensional data vector  
in a real-valued space 

reference vector 
(centroid / mean) 
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K-Means Clustering 

§  Optimize the following objective function: 

§  Find reference vectors that maximize R 
§  Taking the derivative with respect to mi 

and setting it to 0 leads to: 

bi
t =

1 if  i = argmin
j

xt !m j

0 otherwise

"

#
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K-Means Algorithm 

Assign each xt to 
the closest cluster 

Re-compute the cluster 
means mi using the current  
cluster memberships  
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K-Means Example (1) 

image source: Alpaydin, Introduction to Machine Learning 
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K-Means Example (2) 

image source: Bishop, Pattern Recognition and Machine Learning  
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Strength of K-Means  

§  Easy to understand and to implement 

§  Efficient O(nkt)  
n = #iterations, k = #clusters, t = #data points 

§  Converges quickly to a local optimum  

§  Most popular clustering algorithm 
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Weaknesses of K-Means  

§  User needs to specify #clusters (k) 
Later introduced: Method to estimate k 

§  Sensitive to initialization  
Strategy: Use different seeds 

§  Sensitive to outliers since all data points 
contribute equally to the mean  
Strategy: Try to eliminate outliers 

§  Prefers clusters of approximately similar 
size (objects are assigned to the nearest 
centroid) 



Example: Problem with K-Means 
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§  Dataset generated from 
three Gaussians 

§  K-means prefers equally 
sized clusters 

image source: wikipedia 
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Soft Assignments 

§  So far, each data point was assigned to 
exactly one cluster 

§  A variant called soft k-means allows for 
making fuzzy assignments 

§  Data points are assigned to clusters with 
certain probabilities 



Soft K-Means (Informally) 

§  Choose k clusters centroids 

§  Assign randomly to each data point 
probabilities for being in the clusters 

§  Repeat until convergence 
§  Compute the centroid for each cluster taking into 

account the membership probabilities 

§  For each data point, re-compute its membership 
probabilities based on the distance to the 
centroids 
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Soft K-Means Clustering (1) 
§  Each data t point is given a soft assignment 

to all means k: 

§  β is a “stiffness” parameter and plays a 
crucial role 
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Soft K-Means Clustering (2) 

§  Soft k-means optimizes the following 
objective function: 

 

 

§  Accordingly, the means are updated: 



Example: Hard vs Soft K-Means 
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hard k-means soft k-means 

image source: wikipedia 
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Properties of  
Soft K-Means Clustering 
§  Points between clusters get assigned to 

both of them (accounts for uncertainty) 

§  Additional parameter β 

§  Same problem as k-means: Local optimum; 
the result depends on the initial choice of 
membership probabilities 

§  Extension: Clusters with varying shapes 
can be treated in a probabilistic framework 
(mixtures of Gaussians, see next lecture) 



25 

Similarity of Soft K-Means and 
Expectation Maximization (EM) 
§  EM is a general method for finding the 

maximum-likelihood estimate of the 
parameters of the underlying distribution  

§  In case of Gaussian distributions, the 
parameters are the means (and variances) 

§  EM finds the model parameters that 
maximize the likelihood of the given, 
incomplete data 



26 

Expectation Maximization (EM) 
Basic Definitions 

§  Two sets of random variables  
§  Observed data set d  

§  Hidden variables c  
(assignment of data points to clusters) 

§  Since the joint likelihood (incl. the hidden 
variables!) cannot be determined, we work 
with its expectation 
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§  … is the integral of the random variable with 
respect to its probability measure 

§  For discrete random variables this is 
equivalent to the probability-weighted sum 
of the possible values 

§    
§    

§    

§    

Expectation (Expected Value)  
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Expected Data Likelihood 

§  Observed data 
§  Correspondence variables (hidden)  

§  Joint likelihood of d and c given model θ 

§  Since the values of c are hidden, optimize 
the expected value of the log likelihood 
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§  Optimizing the expected log likelihood is 
usually not easy 

§  EM iteratively maximizes log likelihood 
functions 

§  EM generates a sequence of models 
               of increasing log likelihood 

§  EM converges to a (local) optimum 

Expectation Maximization 
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Expectation Maximization 

§  Use so-called Q-function to find the model 
with the maximum expected data likelihood 

§  Define the expected data log likelihood as a 
function of θ 

current parameter estimates 
used to evaluate the expectation 

new parameters we 
optimize to increase Q 

Expected value: 
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Expectation Maximization 

Expectation (E) step  
§  Compute expected values for the hidden 

variables c given the current model      and 
the observed data d    

Maximization (M) step 
§  Maximize the expected likelihood 
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Iterating E and M Steps 

Compute new model 
components given the 

expectations 

Compute the 
expectations given the 

current model 

random 
initial  
model E-step: 

M-step: 

model 



Properties of EM 
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§  Each iteration is guaranteed to increase the 
data log likelihood 

§  EM is guaranteed to converge to a local 
maximum of the likelihood function 
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Application: Trajectory 
Clustering 

How to learn typical motion patterns of 
people from observations? 
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§  Input: Set of trajectories d1,...,dI 

di = {xi
1,xi

2,...,xi
T} 

kitchen 

sofa 

office 

dining 

TV 

entrance 

piano 

Application: Trajectory 
Clustering 
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What we are looking for 

§  Clustering of similar trajectories into 
motion patterns θ1, ...,θM  
(Note: From now on M = #clusters) 

§  Binary correspondence variables cim 
indicating which trajectory di belongs to 
which motion pattern θm 

Problem: 
How can we estimate cim?  
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§  Use T Gaussians with fixed variance to 
represent each motion pattern (= model) 

§  If we knew the values of the cim, the 
computation of the motion patterns would 
be easy 

§  But: These values are hidden 

§  Use EM to compute 
§  Expected values for the cim  
§  The model θ (i.e., the set of motion patterns) 

which has the highest expected data 
likelihood  

Motion Patterns 
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Likelihood of Trajectory di given 
Motion Pattern θm={θ1

m, …, θT
m} 

likelihood that the person is at location xi
t 

after t observations given it is engaged in 
motion pattern θm with the means  
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Data Likelihood 
§  Joint likelihood of a single trajectory 

and its correspondence vector  

§  Expected log likelihood 
Note: cim=1 for exactly one m 
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Expected Data Likelihood 

Expectation is a 
linear operator 

Q-Function 
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E-Step: Compute the Expectations 
Given the Current Model 

likelihood that the i-th trajectory 
belongs to the m-th model 
component 

 

normalizer 

 

Bayes’ 

uniform prior 

Note: cim can be 0 or 1 
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M-Step: Maximize the Expected 
Likelihood 

Compute partial derivative with respect to 
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M-Step: Maximize the Expected 
Likelihood 

This is the mean update of soft k-means 
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EM Application Example:  
9 Trajectories of 3 Motion Patterns 

A 

B 
C 
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EM: Example (step 1) 

Cim: 

 

 

 

θ1: 

 

A->B C->A A->C 

MP 

trajectories 

likelihood that s0 
belongs to the red  
motion pattern 

A 

B C 
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EM: Example (step 2) 

Cim: 

 

 

 

θ2: 
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EM: Example (step 3) 

Cim: 

 

 

 

θ3: 

 



48 

EM: Example (step 4) 

Cim: 

 

 

 

θ4: 
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EM: Example (step 5) 

Cim: 

 

 

 

θ5: 
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EM: Example (step 6) 

Cim: 

 

 

 

θ6: 
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EM: Example (step 7) 

Cim: 

 

 

 

θ7: 
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EM: Example (step 8) 

Cim: 

 

 

 

θ8: 

 



53 

EM: Example (step 9) 

Cim: 

 

 

 

θ9: 
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Estimating the Number of 
Model Components Greedily 

After convergence of the EM check whether the 
model can be improved  

§  by introducing a new model component for the 
trajectory which has the lowest likelihood or 

§  by eliminating the model component which has the 
lowest utility. 

Select model θ which has the highest evaluation 
 
 
where M = #model components, I = #trajectories 

 Bayesian Information Criterion [Schwarz,`78] 
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Application Example 
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Learned Motion Patterns 



Prediction of Human Motion 
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learned motion patterns 

motion prediction anticipation   

situation 



Prediction of Human Motion 
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learned motion patterns motion prediction 

behavior adaption 
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Summary 

§  K-means is the most popular clustering 
algorithm 

§  It is efficient and easy to implement 
§  Converges to a local optimum 
§  A variant of hard k-means exists allowing 

soft assignments 
§  Soft k-means corresponds to the EM 

algorithm which is a general optimization 
procedure  
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Further Reading 

E. Alpaydin  

Introduction to Machine Learning 
 

C.M. Bishop 

Pattern Recognition and Machine  
Learning  

 
J. A. Bilmes  

A Gentle Tutorial of the EM algorithm and  
its Applications to Parameter Estimation 
(Technical report) 


