Advanced Techniques for Mobile Robotics

Gaussian Processes in Robotics

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Overview

- Regression problem
- Gaussian process models
- Learning GPs
- Applications
- Summary

Given n observed points

 $\mathcal{X} = \{(x_1, t_1), \dots, (x_n, t_n)\}, \quad x_i \in \mathbb{R}^p, \ t_i \in \mathbb{R}$

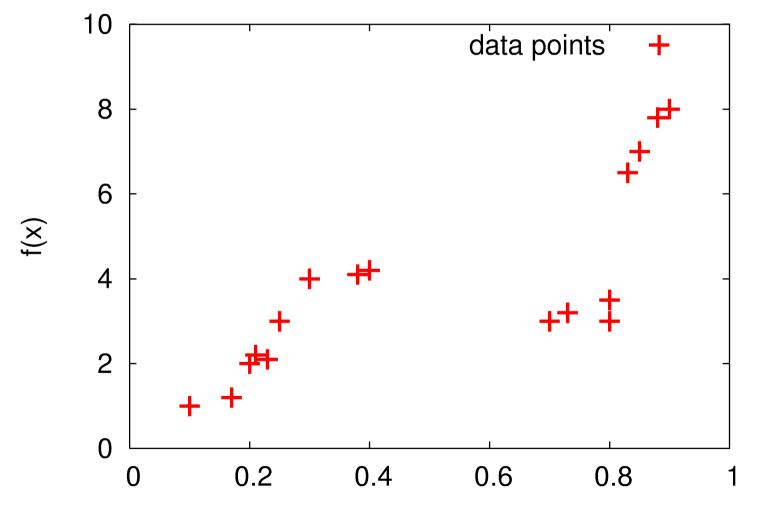
Assuming the dependency

 $t_i = f(x_i) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2), \ i.i.d$

How to predict new points

 $p(t_{n+1} \mid x_{n+1}, \mathcal{X})$

Given n observed points

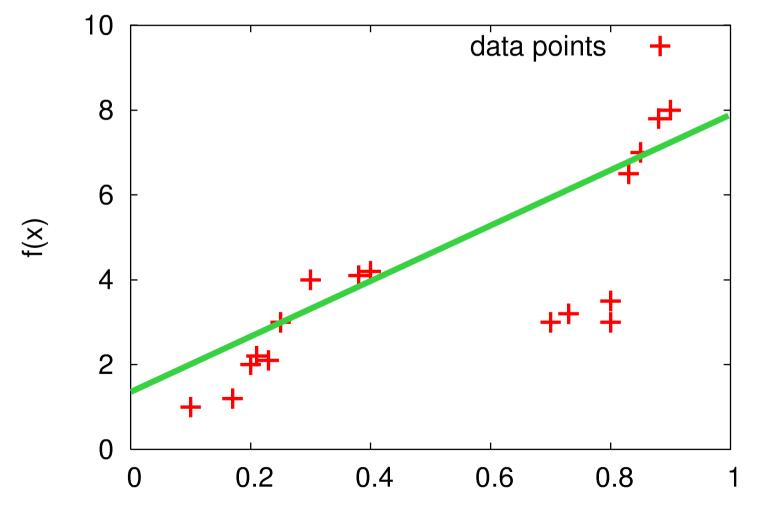


- Solution 1: Parametric models
 - Linear $f(x_i) = c_0 + c_1 x_i + \epsilon_i$
 - Quadratic $f(x_i) = c_0 + c_1 x_i + c_2 x_i^2 + \epsilon_i$
 - Higher order polynomials

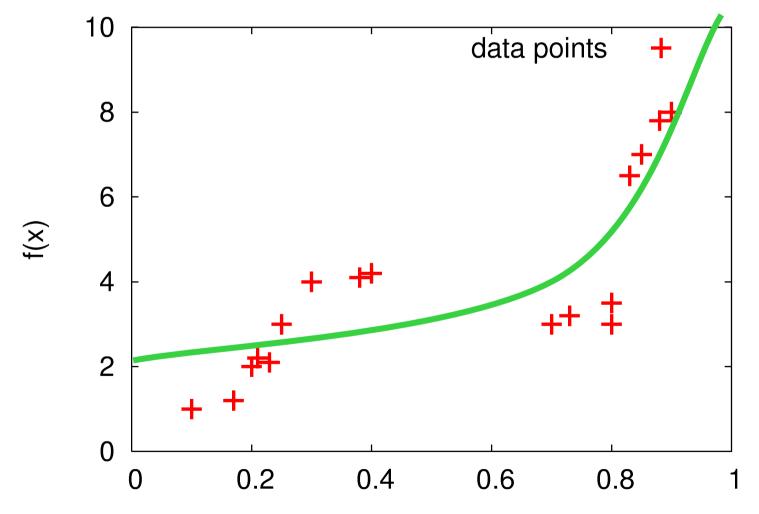
...

Learning: optimizing the parameters

Solution 1: Parametric models



Solution 1: Parametric models

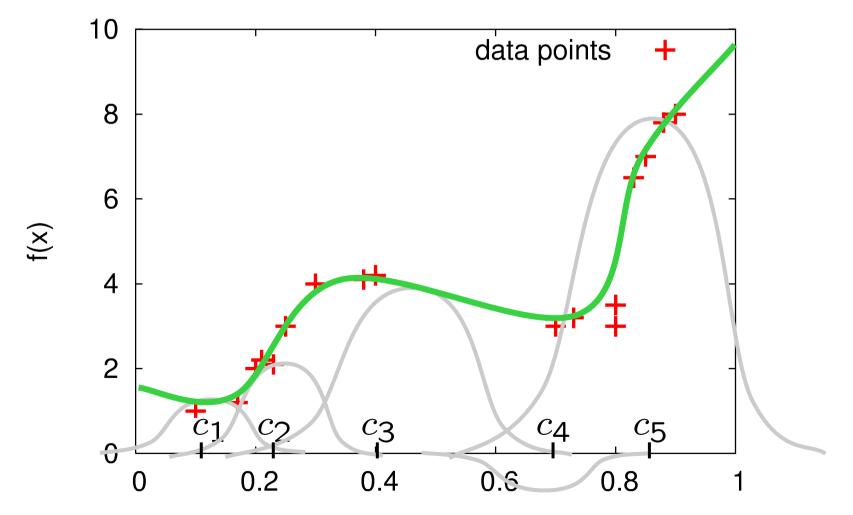


- Solution 2: Non-parametric models
 - Radial Basis functions

$$f(x_i) = \sum_j w_j \ k(\parallel x_i - c_j \parallel)$$
$$k(\parallel x - c \parallel) \propto e^{-\beta \parallel x - c \parallel^2}$$

- Histograms, Splines, Support Vector Machines ...
- Learning: finding the structure of the model and optimize its parameters

Given n observed points



- Solution 3: Express $t_i = f(x_i) + \epsilon_i$ directly in terms of the data points
- Idea: Any finite set of values t_i sampled from (t₁,...,t_n) ~ N(0,K) has a joint Gaussian distribution with a covariance matrix K given by

$$k_{ij} = \operatorname{cov}(t_i, t_j) = \operatorname{cov}(f(x_i), f(x_j))$$

=: $c(x_i, x_j)$

Then, the n+1 dimensional vector

 $(f(x_1),\ldots,f(x_n),f(x_{n+1})),$

which includes the new target to be predicted $t_{n+1} = f(x_{n+1})$, comes from an n+1 dimensional Gaussian

 The predictive distribution for the new target p(t_{n+1} | x_{n+1}, X) is a 1-dimensional Gaussian

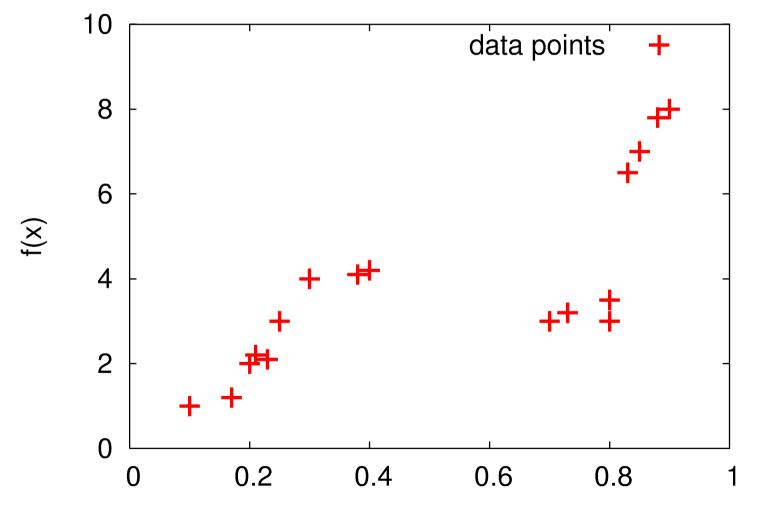
- Given the n observed points
- Squared exponential covariance function

$$c(x_i, x_j) = \sigma_f^2 \cdot \exp\left(-\frac{(x_i - x_j)^2}{\ell^2}\right) + \delta_{(i=j)}\sigma_n^2$$

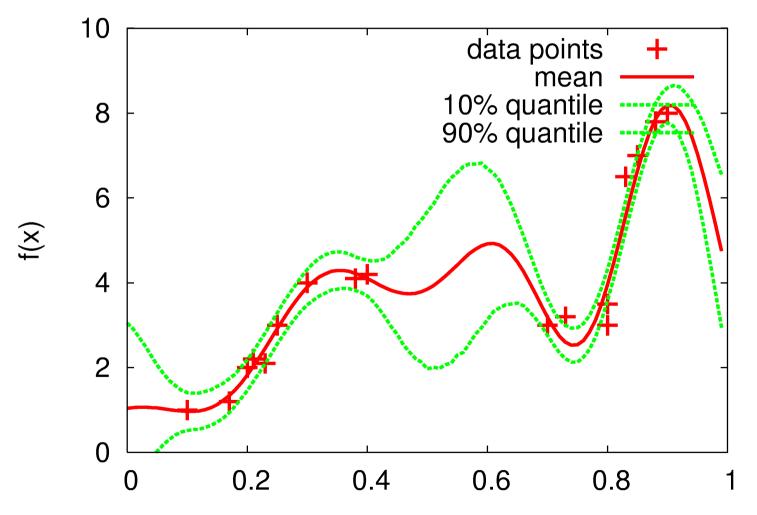
• with $\sigma_f = \frac{1}{6}, \ \ell = 5,$

• and a noise level σ_n^2

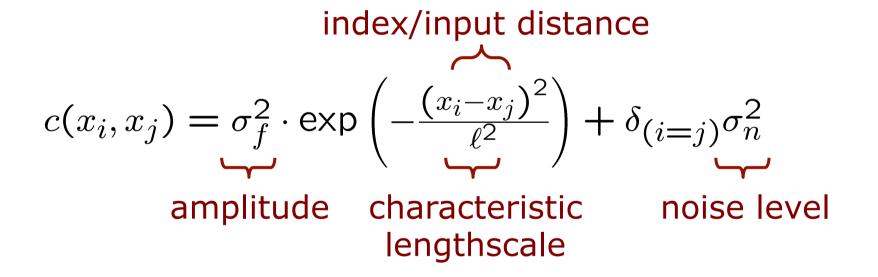
Given n observed points



GP model

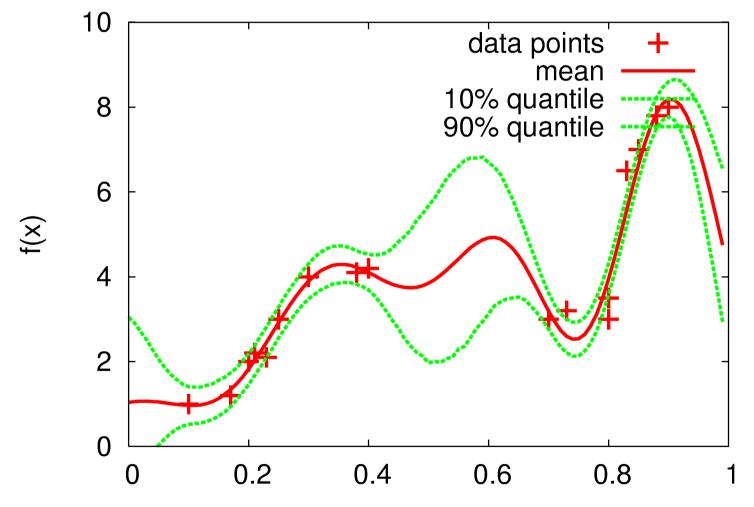


The squared exponential covariance function:

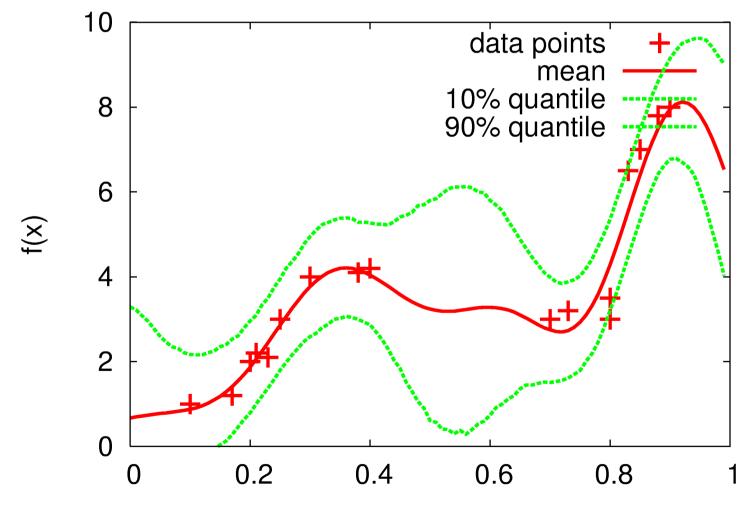


Easy to interpret parameters

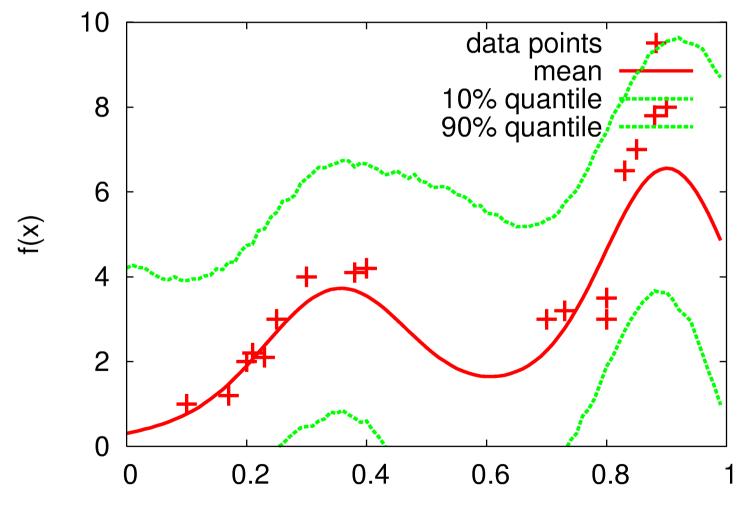
Example: low noise



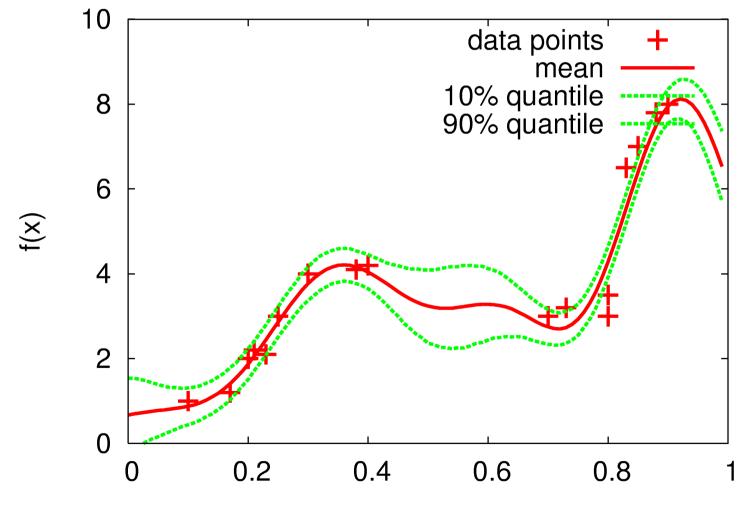
Example: medium noise



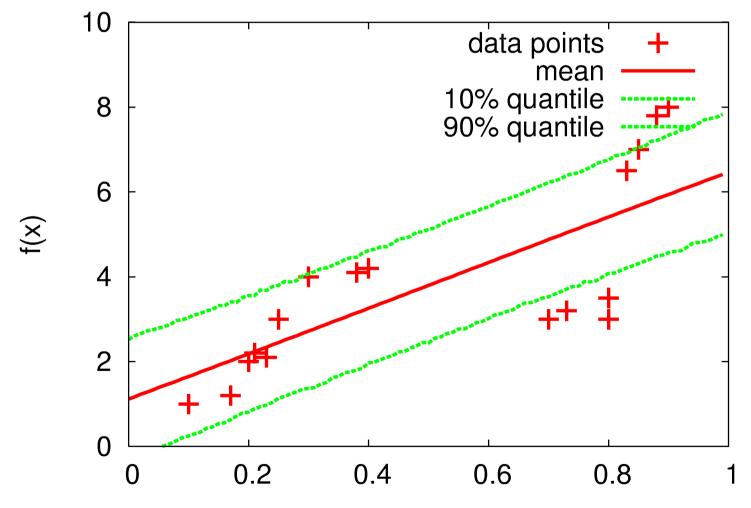
Example: high noise



Example: small lengthscale



Example: large lengthscale



Covariance function specifies the prior



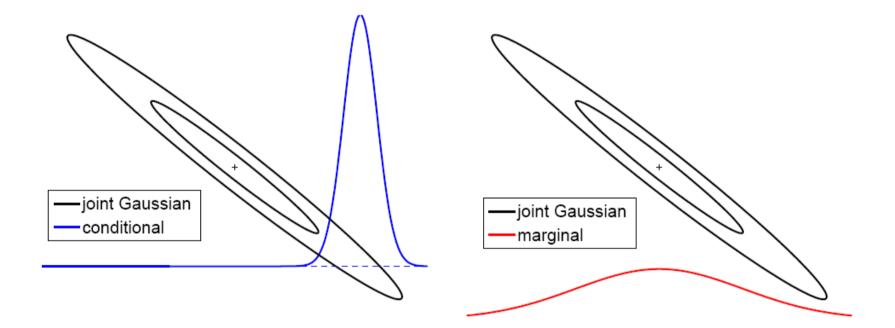
Recall, the n+1 dimensional vector

$$(f(x_1),\ldots,f(x_n),f(x_{n+1})),$$

comes from an n+1 dimensional normal distribution

The predictive distribution for the new target p(t_{n+1} | x_{n+1}, X) is a 1-dimensional Gaussian.

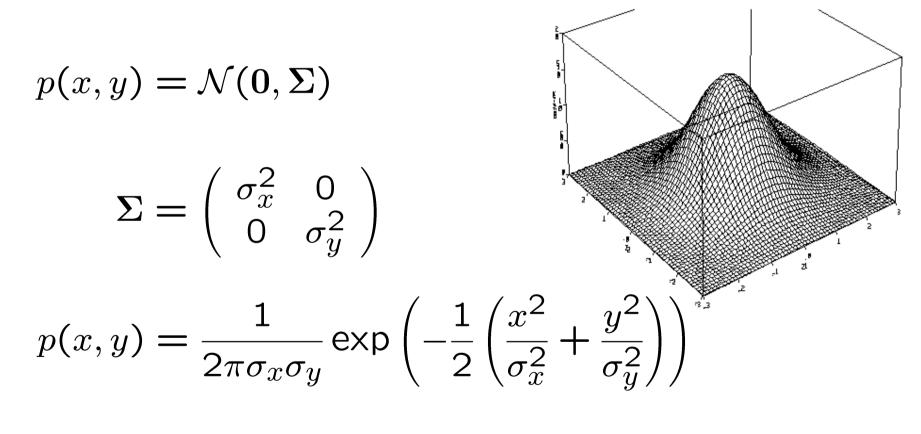
Recall the 2-dimensional joint Gaussian:



 The conditionals and the marginals are also Gaussians

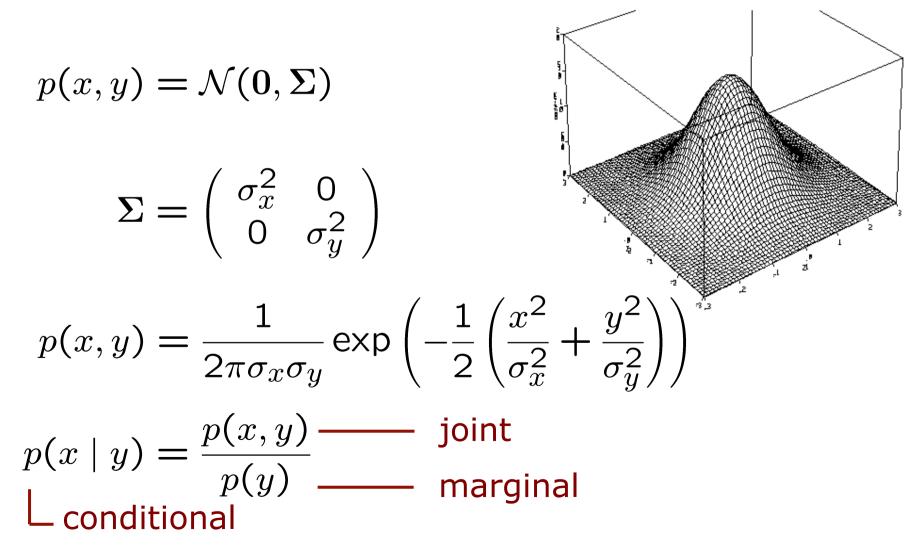
Figure taken from Carl E. Rasmussen: NIPS 2006 Tutorial

Simple bivariate example:



 $p(x \mid y) =$

Simple bivariate example:

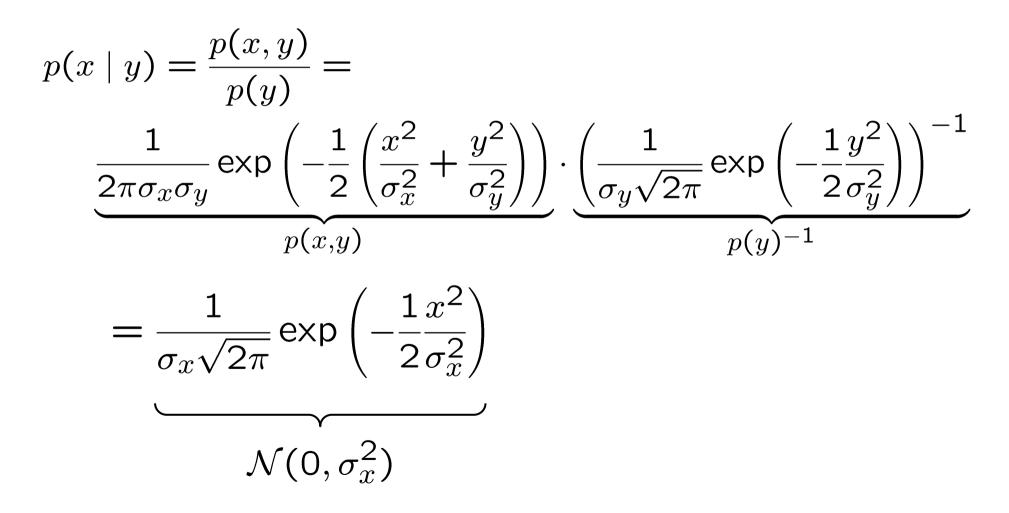


Marginalization:

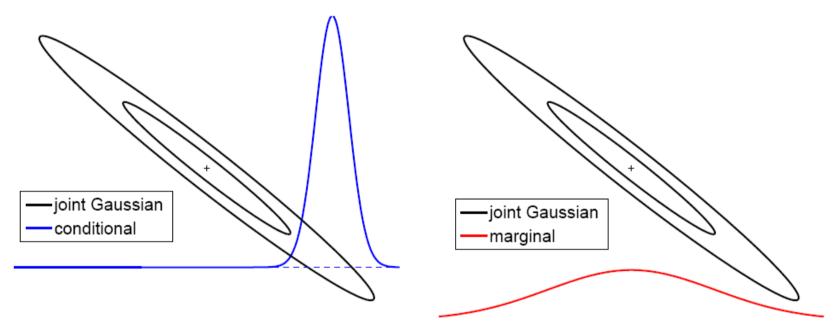
$$p(y) = \int p(x,y) dx$$

= $\int \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)\right) dx$
= $\frac{1}{\sigma_y\sqrt{2\pi}} \exp\left(-\frac{1}{2}\frac{y^2}{\sigma_y^2}\right)$
 $\mathcal{N}(0,\sigma_y^2)$

The conditional:



Slightly more complicated in the general case:



 The conditionals and the marginals are also Gaussians

> Figure taken from Carl E. Rasmussen: NIPS 2006 Tutorial

Conditioning the joint Gaussian in general

$$p(x, y) = \mathcal{N}(\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}, \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{pmatrix})$$
$$p(x \mid y) = \mathcal{N}(\mathbf{a} + \mathbf{B}\mathbf{C}^{-1}(\mathbf{y} - \mathbf{b}), \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^T)$$

In case of zero mean:

$$p(x, y) = \mathcal{N}(\mathbf{0}, \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{pmatrix})$$
$$p(x \mid y) = \mathcal{N}(\mathbf{B}\mathbf{C}^{-1}\mathbf{y}, \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^T)$$

Recall the GP assumption

 $\mathbf{t} = (t_1, \dots, t_n)^T$ $\mathbf{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{K})$ $\begin{pmatrix} \mathbf{t} \\ t_{n+1} \end{pmatrix} \sim \mathcal{N}(\mathbf{0}, \begin{pmatrix} \mathbf{K} & \mathbf{k} \\ \mathbf{k}^T & v \end{pmatrix})$ $t_{n+1} \mid \mathbf{t} \sim \mathcal{N}(\mu^*, \sigma^*)$

Noise-free mean and variance of the predictive distribution have the form

$$\mu^* = E(t_{n+1} \mid t_1, \cdots, t_n) = \mathbf{k}^T \mathbf{K}^{-1} \mathbf{t}$$
$$\sigma^* = V(t_{n+1} \mid t_1, \cdots, t_n) = v - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k}$$

with

$$\mathbf{K} = \begin{bmatrix} c(x_1, x_1) & \dots & c(x_1, x_n) \\ \dots & \dots & \dots \\ & \dots & c(x_n, x_n) \end{bmatrix} \quad k = \begin{bmatrix} c(x_1, x_{n+1}) \\ \dots \\ c(x_n, x_{n+1}) \end{bmatrix}$$
$$v = c(x_{n+1}, x_{n+1}) \qquad t = \begin{bmatrix} t_1 \\ \dots \\ t_n \end{bmatrix}$$

 Mean and variance of the predictive distribution then lead to

$$\mu^* = \mathbf{k}^T (\mathbf{K} + \mathbf{I}\sigma_n^2)^{-1} \mathbf{t}$$

$$\sigma^* = c(x_{n+1}, x_{n+1}) - \mathbf{k}^T (\mathbf{K} + \mathbf{I}\sigma_n^2)^{-1} \mathbf{k}$$

with

$$\mathbf{K} = \begin{bmatrix} c(x_1, x_1) & \dots & c(x_1, x_n) \\ & \dots & & \\ & & \dots & c(x_n, x_n) \end{bmatrix} \quad k = \begin{bmatrix} c(x_1, x_{n+1}) \\ & \dots \\ c(x_n, x_{n+1}) \end{bmatrix}$$

- Learning a Gaussian process means
 - choosing a covariance function
 - finding its parameters and the noise level

• What is the objective?

The hyperparameters

$$\boldsymbol{\theta} = \left\{ \sigma_f, (\ell_1, \dots, \ell_n), \sigma_n^2 \right\}$$

can be found by maximizing the likelihood of the training data

 $\theta = \operatorname{argmax}_{\theta} \log p(t_1, \ldots, t_n \mid x_1, \ldots, x_n, \theta),$

e.g., using gradient methods

Objective: high data likelihood

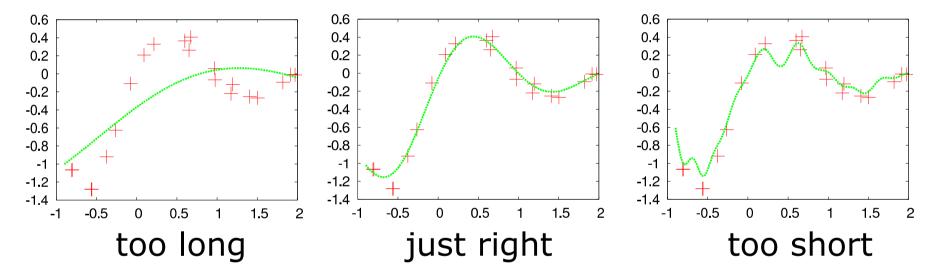
$$\log p(\mathbf{t} \mid \mathbf{x}) = -\frac{1}{2} \mathbf{t}^T (\mathbf{K} + \sigma_n^2)^{-1} \mathbf{t} - \frac{1}{2} \log |\mathbf{K} + \sigma_n^2 \mathbf{I}| - \frac{n}{2} \log 2\pi$$

data fit complexity const.
penalty

 Due to the Gaussian assumption, GPs have Occam's razor built in

Occam's Razor

 Use the simplest explanation that is needed to describe the data



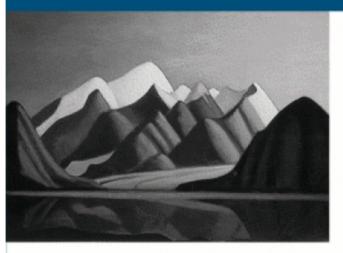
- Data-fit favors overfitting
- Complexity penalty favors simplicity

Advanced Topics / Extensions

- Classification/non-Gaussian noise
- Sparse GPs: Approximations for large data sets
- Heteroscedastic GPs: Modeling nonconstant noise
- Nonstationary GPs: Modeling varying smoothness (lengthscales)
- Mixtures of GPs
- Uncertain inputs

Further Reading

Gaussian Processes for Machine Learning



Carl Edward Rasmussen and Christopher K. I. Williams

Rasmussen and Williams Gaussian Processes for Machine Learning, MIT Press, 2006. http://www.GaussianProcess.org/gpml

Gaussian process web (code, papers, etc): http://www.GaussianProcess.org

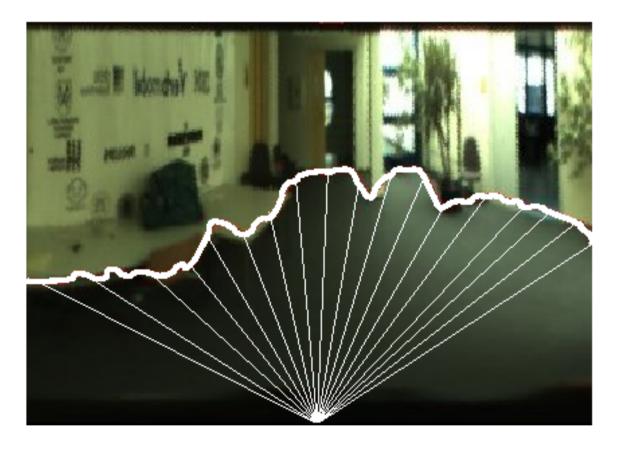
Applications in Robotics

- Monocular range sensing
- Terrain modeling
- Learning sensor models
- Learning to control a blimp
- Localization in cellular networks
- Time-series forecasting

Applications in Robotics

- Monocular range sensing
- Terrain modeling
- Learning sensor models
- Learning to control a blimp
- Localization in cellular networks
- Time-series forecasting

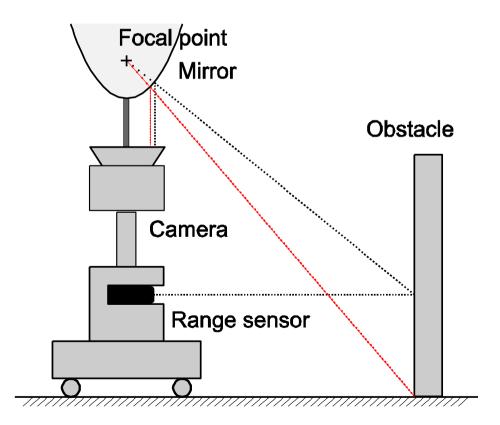
Monocular Range Sensing



Can we learn range from single, monocular camera images?

Training Setup

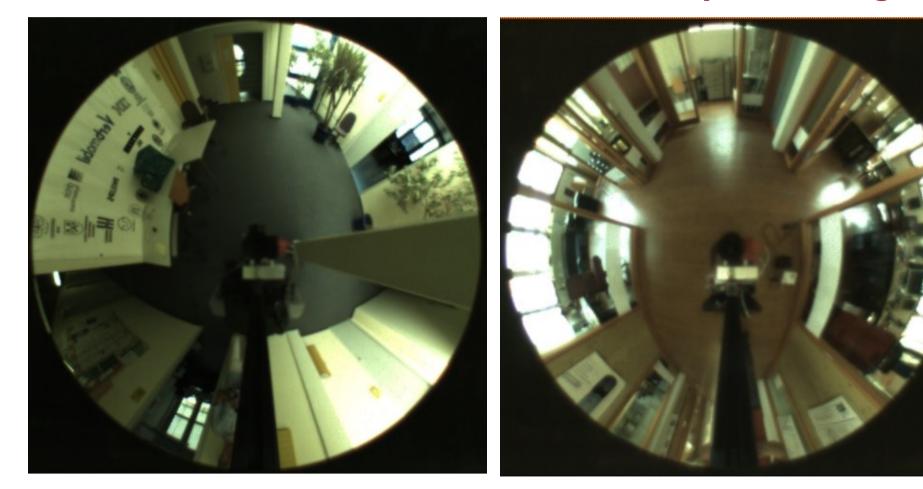
- Mobile robot + laser range finder
- Omni-directional monocular camera



Training Setup

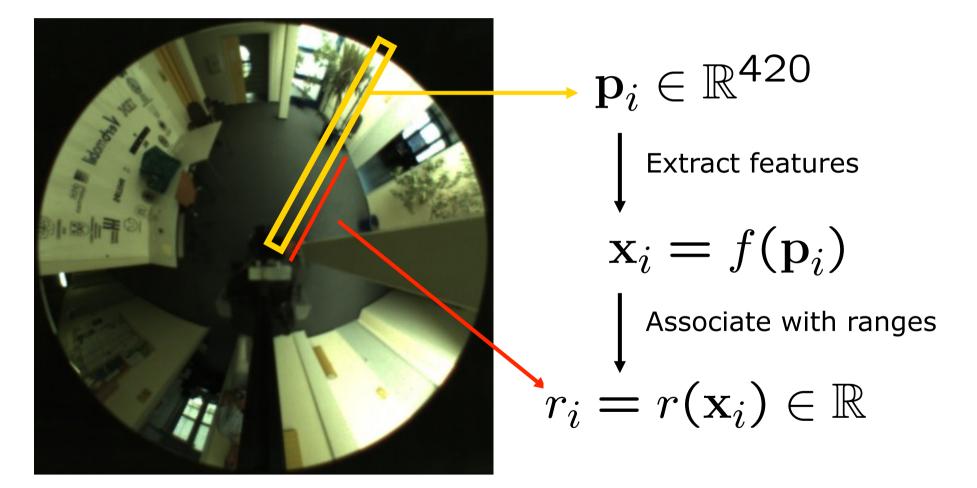
DFKI Saarbrücken

University of Freiburg



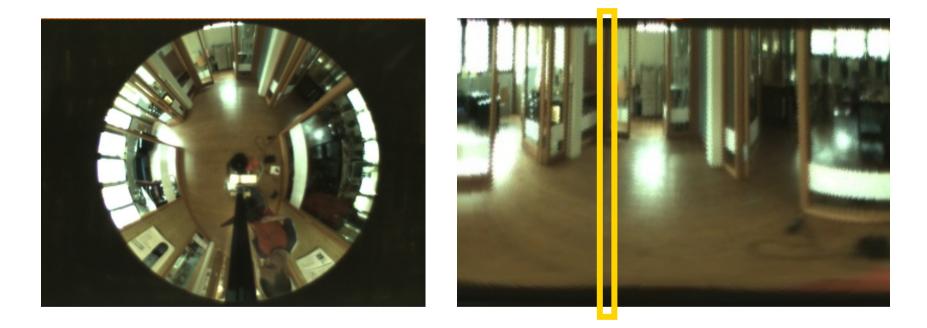
Learning Range from Vision

Associate (polar) pixel columns with ranges



Pre-processing

Warp images into a panoramic view

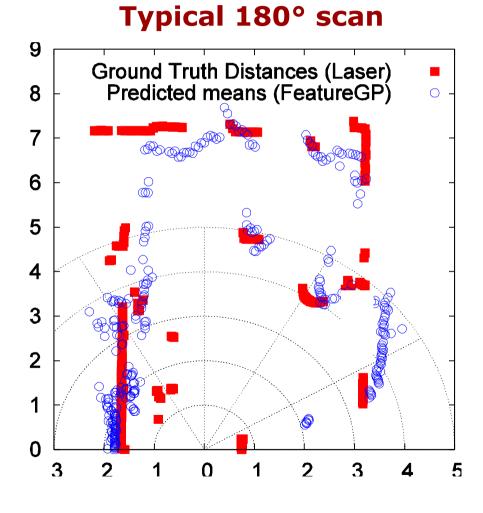


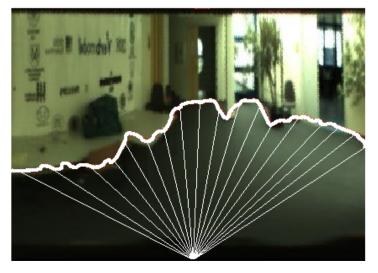
- 120 pixels per column
- Transform to HSV -> 420 dimensions

Visual Features

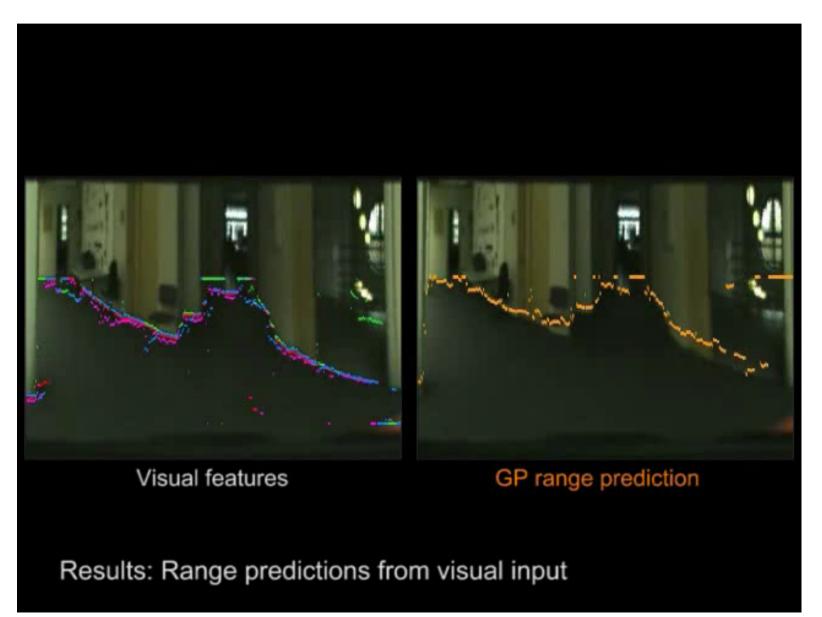
- Two types of features
 - No human engineering: Principle components analysis (PCA) on raw input
 - Use of domain specific knowledge: Edge features that shall correspond to floor boundaries

Experiments





Online Prediction



Mapping Results

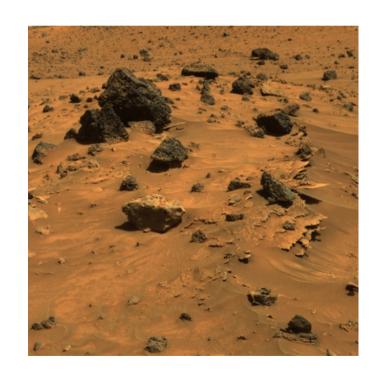
Laser-based Vision-based

Saarbrücken:

Freiburg:

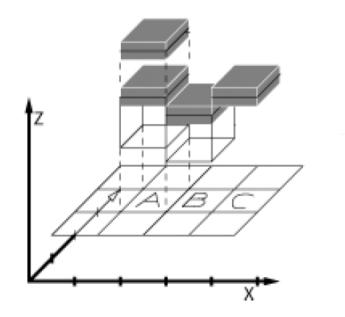
GP-based Terrain Modeling

 3D terrain models are important in many tasks in outdoor robotics



Terrain Modeling

- Given: observations of the terrain surface
- Task: Learn a predictive model
- Classic Approach: Elevation grid maps

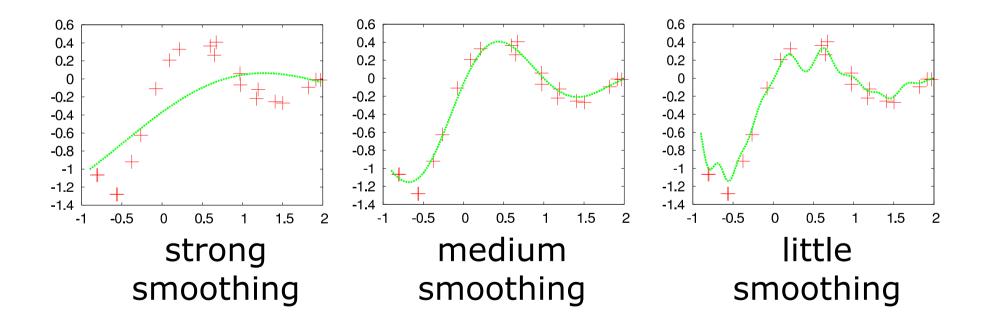


GP-Based Approach

- Generalize the grid-based model to fully continuous spaces by viewing the problem as function regression
- Requirements
 - Probabilistic formulation to handle uncertainty
 - Ability to adapt to the spatial structures

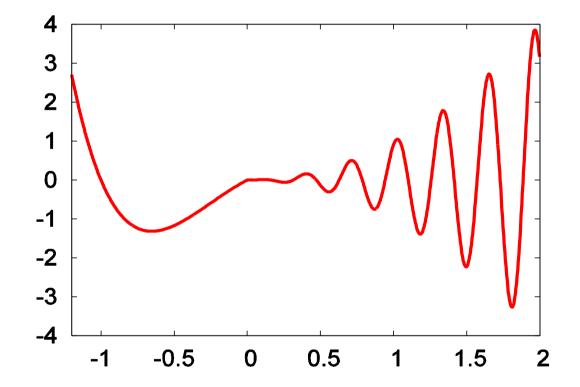
Covariance Function

 Standard covariance function have limited flexibility to adapt to the local spatial structure



Covariance Function

What is **optimal** in this case?



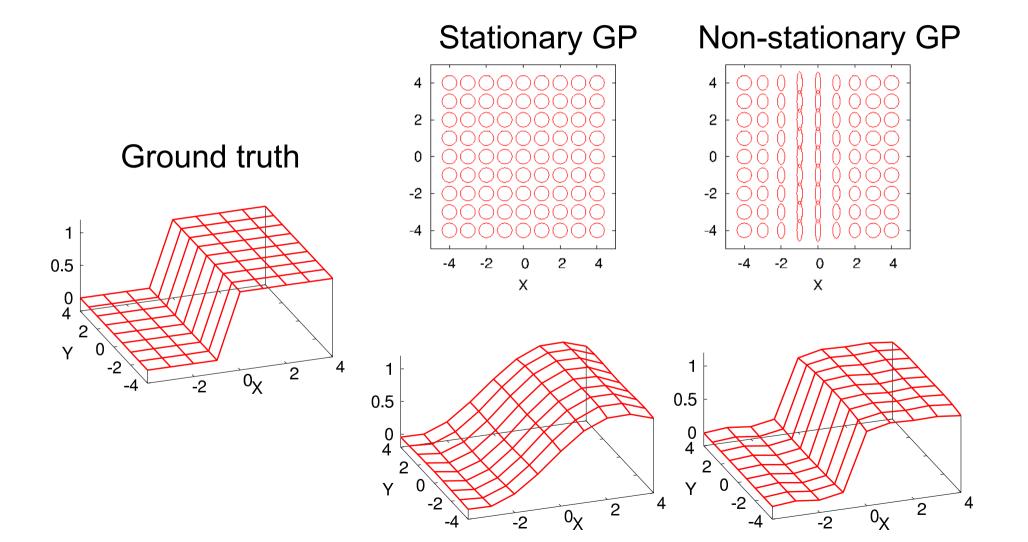
Local Kernel Adaptation

- Adapt kernels based on the terrain gradients
- Covariance is adjusted according to the change in terrain elevation in the local neighborhood

$$\Sigma_{i} = EST(\mathbf{x_{i}})^{-1} = \frac{\mathbf{\nabla y(x_{i})}(\nabla \mathbf{y(x_{i})})^{T}}{\mathbf{\nabla y(x_{i})}(\nabla \mathbf{y(x_{i})})^{T}}$$

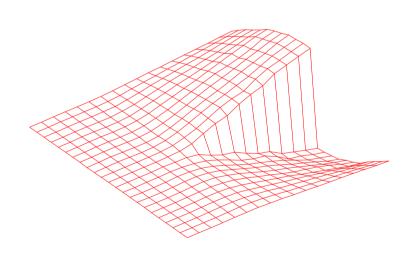
elevation gradient

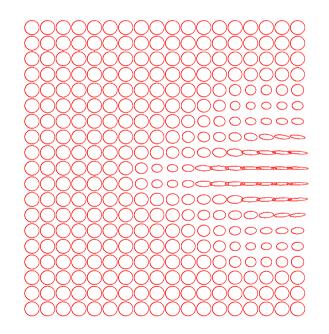
Adapting to Local Structures



Adapting to Local Structure

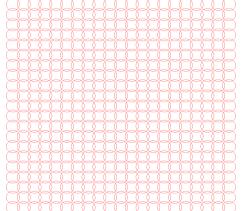
 Model to deal with slowly changing characteristics and strong discontinuities

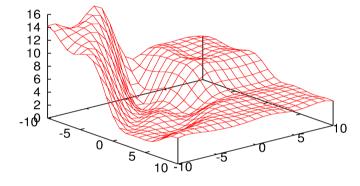


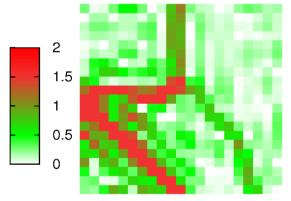


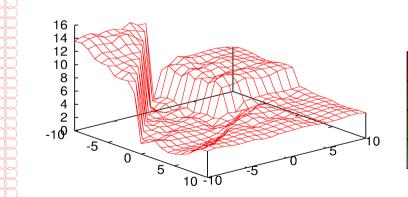
Experiments

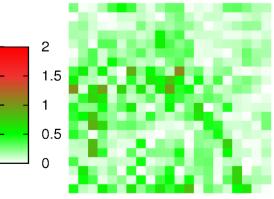
standard



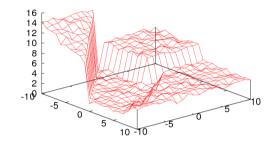








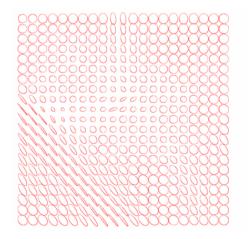
Experiments

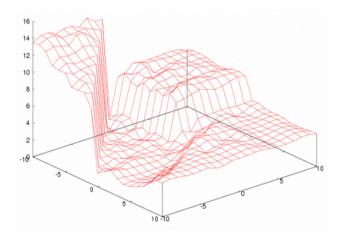


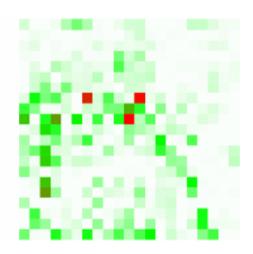
Observation (with white noise σ =0.3)

Predicted Map

Local errors

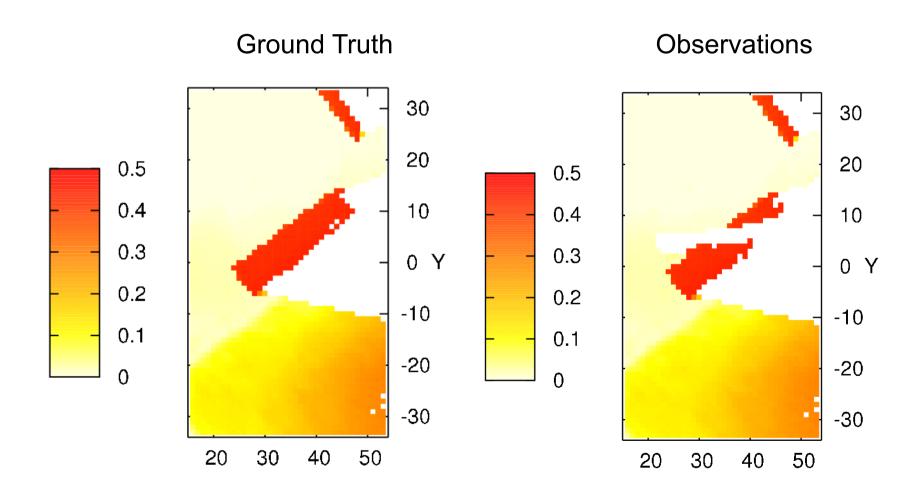




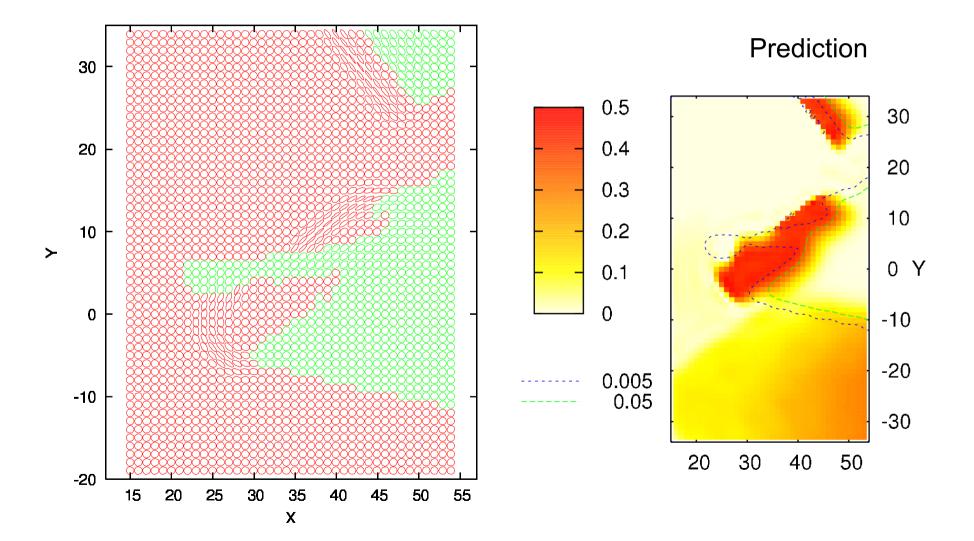


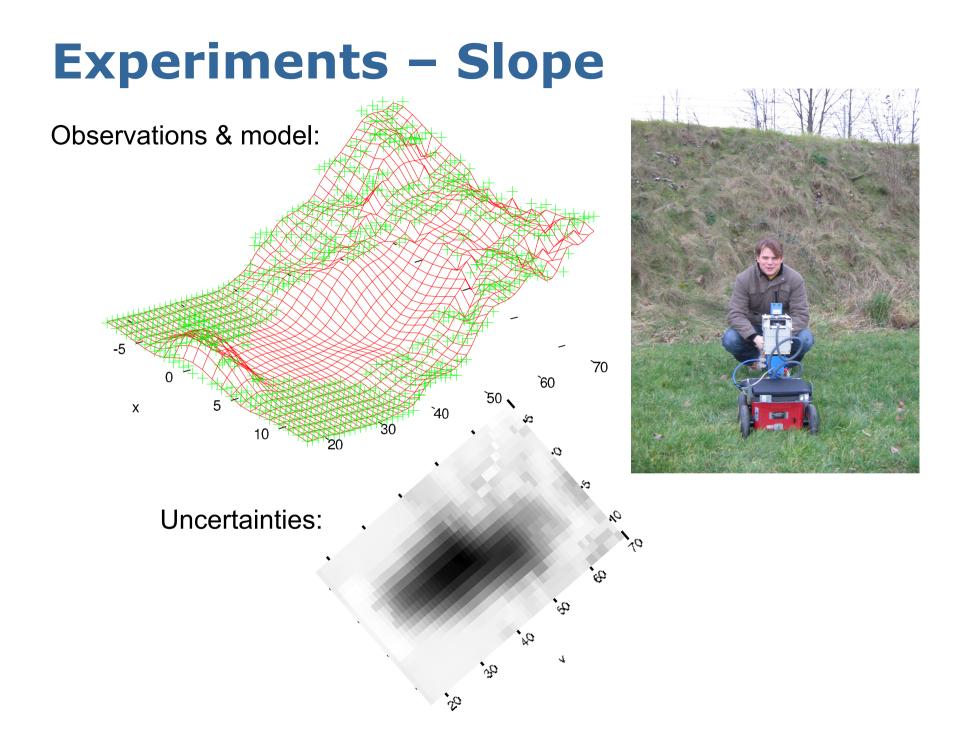
Experiments – Stone Block

Experiments – Stone Block



Experiments – Stone Block





Summary

- GPs are a flexible and practical approach to Bayesian regression
- Prior knowledge is encoded in a human understandable way
- Learned models can be interpreted
- Efficiency mainly depends on the number of training points
- Real-world problem sizes require approximations/sparsity/...