Advanced Techniques for Mobile Robotics SLAM Front-Ends

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Partial image/slide courtesy by Edwin Olson

 Constraints connect the poses of the robot while it is moving via odometry

SLAM

- Observing previously seen areas generates constraints between non-successive poses
- How to obtain the constraints?

Constraint

Interplay between Front-End and Back-End

Constraints From Matching

- Constraints can be obtained from matching observations
 - Scan-matching
 - Feature-based matching
 - Descriptor-based matching

Where to Search for Matches?

 Consider uncertainty of the nodes with respect to the current one

Simple ICP-Based Approach

- Estimate uncertainty of nodes relative to the current pose
- Sample poses in relevant area
- Apply ICP Iterative Closest Point
- Evaluate match
- Accept match based on a threshold

Problems?

Problems

- ICP is sensitive to the initial guess
- Inefficient sampling
- Ambiguities in the environment

Problems

- ICP is sensitive to the initial guess
- Inefficient sampling
- Ambiguities in the environment

Examples

Learning 3D Maps with Laser Data

- Robot that provides odometry
- Laser range scanner on a pan-tilt-unit

Incremental 6D SLAM

Aligning Consecutive Maps

Aligning Consecutive Maps

- Let \mathbf{u}_{i_c} and \mathbf{u}'_{j_c} be corresponding points
- Find the parameters R and t which minimize the sum of the squared error
- ICP

$$e(R, \mathbf{t}) = \sum_{c=1}^{C} d(\mathbf{u}_{i_c}, \mathbf{u}'_{j_c})$$

ICP with additional knowledge

$$e(R, \mathbf{t}) = \sum_{\substack{c=1\\ \text{vertical objects}}}^{C_1} d_v(\mathbf{u}_{i_c}, \mathbf{u}_{j_c}') + \sum_{\substack{c=1\\ \text{traversable}}}^{C_2} d(\mathbf{v}_{i_c}, \mathbf{v}_{j_c}') + \sum_{\substack{c=1\\ \text{non-traversable}}}^{C_3} d(\mathbf{w}_{i_c}, \mathbf{w}_{j_c}')$$

Online Estimated 3D Map

Mapping with a Robotic Car

- 3D laser range scanner (Velodyne)
- Use map for autonomous driving

Parking Garage

Resulting Map

1661 local 3D maps, cell size of 20cm x 20cm

Map-based Autonomous Parking

Mapping with Arial Vehicles

 Flying vehicles equipped with cameras and an IMU

Examples of Camera Images

SURF Features

- Provide a description vector and an orientation
- Descriptor is invariant to rotation and scale

Determining the Camera Pose Wanted: x, y, z, φ , θ , Ψ (roll, pitch, yaw)

- IMU determines roll and pitch accurately
- x, y, z and the heading (yaw) have to be calculated based on the camera images
- 3D positions of **two** image features is sufficient to determine the camera pose

Feature Matching for Pose Estimation

features in image

features in map

Camera Pose Estimation

- 1. Find possible matches (kd-tree)
- 2. Order matches by descriptor distance
 - Use two matches to calculate the camera position, start with the best one
 - Re-project all features accordingly to get a quality value about this pose
 - Repeat until satisfactory pose is found
- 3. Update map

Finding Edges in the Graph

- Visual odometry: Match features against the N previously observed ones
- Localization: Match against features in the map in a given region around the odometry estimate (local search)
- Loop closing: Match a subset of the features against all map features.
 Match leads to a localization step

Outdoor Example

Resulting Trajectory

- Length (Google Earth): 188m
- Estimated length: 208m

Indoor Example

Ground Truth

System on a Blimp

Problems

- ICP is sensitive to the initial guess
- Inefficient sampling
- Ambiguities in the environment
- Dealing with ambiguous areas in an environment is essential for robustly operating robots

Ambiguities - Global Ambiguity

- A is inside the uncertainty ellipse
- Are A and B the same place?

Ambiguities - Global Ambiguity

- A is inside the uncertainty ellipse
- A and B might not be the same place

Ambiguities - Global Ambiguity

- A is inside the uncertainty ellipse
- A and B are not the same place

Ambiguities - Global Sufficiency

- A is inside the uncertainty ellipse
- The is no other possibility for a match

Ambiguities - Local Ambiguity

 "Picket Fence Problem": largely overlapping local matches

Global Match Criteria

- Global Sufficiency: There is no disjoint match ("A is not somewhere else entirely")
- Local unambiguity: There are no overlapping matches ("A is either here or somewhere else entirely")

Both need to be satisfied for a match

Olson's Proposal

Olson 2009

Topological Grouping

- Group together topologically-related poseto-pose matches to form local matches
- Each group asks a "topological" question: Do two local maps match?

Local Unambiguous Matches

Goal

Unfiltered Local Match (set of pose-to-pose matches) Locally consistent and unambiguous local match (set of pose-to-pose matches)

Locally-Consistent Matches

- Correct pose-to-pose hypotheses must agree with each other
- Incorrect pose-to-pose hypotheses tend to disagree with each other
- Find subset of self-consistent of hypotheses
- Multiple self-consistent subsets, are an indicator for a "picket fence"!

Do Two Hypotheses Agree?

Consider two hypotheses i and j in the set:

Form a loop using edges from our prior

Rigid-body transformation around the loop should be the identity matrix

Olson 2009

Idea of Olson's Method

Form pair-wise consistency matrix A

Single Cluster Graph Partitioning

- Idea: Identify the subset of consistent hypothesis
- Find the best indicator vector (represents a subset of the hypotheses)

Single Cluster Graph Partitioning

- Identify the subset of hypotheses that is maximally self-consistent
- Which subset v has the greatest average pair-wise consistency λ?

$$\lambda = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}$$

Sum of all pair-wise consistencies between hypotheses in v

Number of hypotheses in v

• Densest Subgraph Problem Gallo et al 1989

Consistent Local Matches

• We want find **v** that maximizes $\lambda(\mathbf{v})$

$$\lambda(\mathbf{v}) = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}$$

- Treat as continuous problem
- Derive and set to zero

$$\frac{\partial \lambda(\mathbf{v})}{\partial \mathbf{v}} = 0$$

Which leads to (for symmetric A)

$$A\mathbf{v} = \lambda \mathbf{v}$$

Consistent Local Matches

- $A\mathbf{v} = \lambda \mathbf{v}$: Eigenvalue/vector problem
- The dominant eigenvector v₁ maximize

$$\lambda(\mathbf{v}) = \frac{\mathbf{v}^{\mathrm{T}} \mathbf{A} \mathbf{v}}{\mathbf{v}^{\mathrm{T}} \mathbf{v}}$$

- The hypothesis represented by V₁ is maximally self-consistent subset
- If λ_1/λ_2 is large (>2) then $\bm{v_1}$ is locally unambiguous
- Discretize V₁ after maximization

Global Consistency

- Correct method: can two copies of A be arranged so that they both fit inside the covariance ellipse?
- Approximation: is the dimension of A at least half the length of the dominant axis of the covariance ellipse?
- Potential failures for narrow local matches

Note on the Uncertainty

- In graph-based SLAM, computing the uncertainty relative to A requires inverting the Hessian H
- Fast approximation by Dijkstra expansion ("propagate uncertainty along the shortest path in the graph")
- Conservative estimate

Olson's Proposal

Olson 2009

Example

Conclusions

- Local matching can be used to establish global matches
- Matching observations is used to generate pose-to-pose hypotheses (constraints)
- Local matches assembled from pose-to-pose hypotheses
- Local ambiguity ("picket fence") can be resolved via SCGP's confidence metric
- Positional uncertainty: more uncertainty requires more evidence