Advanced Techniques
for Mobile Robotics

TORO - SLAM with Gradient
Descent

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI
I

FREIBURG

Graph-based SLAM

SLAM = simultaneous localization and
mapping
Use a graph to represent the problem

Every node in the graph corresponds to a
pose of the robot during mapping

Every edge between two nodes corresponds
to the spatial constraints between them

Goal: Find a configuration of the nodes that
minimize the error introduced by the
constraints

Topics Today

= Estimate the Gaussian posterior about the
poses of the robot using gradient descent

Two Parts:

= Estimate the means via gradient descent
(maximum likelihood map)

= Estimate the covariance matrices via belief
propagation and covariance intersection

Problem Formulation
= The problem can be described by a graph

Observation
of p; from p;

error

O N O
Goal: nodes

= Find the assignment of poses to the nodes of the
graph which minimizes the negative log likelihood
of the observations:

p=argminy ;e TQ@J%

Stochastic Gradient Descent

Minimize the error individually for each constraint
(decomposition of the problem into sub-problems)

Solve one step of each sub-problem

Solutions might be contradictory

The magnitude of the correction decreases with
each iteration

Learning rate to achieve convergence

selected constraint

[First introduced in the SLAM community by Olson et al., " 06]

Stochastic Gradient Descent

Minimize the error individually for each constraint
(decomposition of the problem into sub-problems)

Solve one step of each sub-problem
Solutions might be contradictory

The magnitude of the correction decreases with
each iteration

Learning rate to achieve convergence

=)

distribute the error over
a set of involved nodes

[First introduced in the SLAM community by Olson et al., " 06]

Stochastic Gradient Descent

= Minimize the error individually for each constraint
(decomposition of the problem into sub-problems)

= Solve one step of each sub-problem
= Solutions might be contradictory

= The magnitude of the correction decreases with
each iteration

= |earning rate to achieve convergence

= o m
v

[First introduced in the SLAM community by Olson et al., " 06]

Preconditioned SGD

= Minimize the error individually for each constraint
(decomposition of the problem into sub-problems)

Solve one step of each sub-problem

Solutions might be contradictory
= A solution is found when an equilibrium is reached

Update rule for a single constraint:

Previous solution||Hessian || Information matrix

v !
t+1 r 1471’6 0.
X =X A T
Current solution |Learning rate |Jacobian |residual

[First introduced in the SLAM community by Olson et al., " 06]

Node Parameterization

= How to represent the nodes in the graph?

= Impact on which parts need to be updated for a
single constraint update?

= This are to the “sub-problems” in SGD

= Transform the problem into a different space so

that:
= the structure of the problem is exploited
= the calculations become fast and easy

parameters | | poses parameters

} '
X:Tg(ls)/<_>p:9_1(x) X" = argmane (X)TQz] z](X>
2y

Mapping function transformed problem

Parameterization of Olson

= ITncremental parameterization:

Li = Pi — Pi—1

1 1

parameters | | poses

= Results directly from the trajectory takes by
the robot

= Problem: for optimizing a constraint between
the nodes i and k, one needs to updates the
nodesj =i, ..., k ignoring the topology of the
environment

Alternative Parameterization

= Exploit the topology of the space to compute
the parameterization

= Idea: “Loops should be one sub-problem”

= Such a parameterization can be extracted
from the graph topology itself

Tree Parameterization

= How should such a problem
decomposition look like?

Tree Parameterization

= Use a spanning tree!

Tree Parameterization

= Construct a spanning tree from the graph

= The mapping function between the poses and the
parameters is:

T; = P;i © Pparent(s) X = Pp_a}rent(i)P’i

= Error of a constraint in the new parameterization

E;; = A,L-_jl - UpChain_1 - DownChain

Only variables along the path of a
pj ~=-=" Di constraint are involved in the update

Stochastic Gradient Descent using
the Tree Parameterization

= The tree parameterization leads to several
smaller problems which are either:

= constraints on the tree (“open loop”)
= constraints not in the tree (“a loop closure™)

= Fach SGD equation independently solves
one sub-problem at a time
= The solutions are integrated via the learning

rate 3

Computation of the Update Step

= 3D rotations lead to a nonlinear system

= Update the poses directly according to the SGD
equation may lead to poor convergence

= This increases with the connectivity of the graph
= Key idea in the SGD update:

—1 4T
Ax =)\-H JZJQZ]’I“Z]
Idea: distribute a fraction of the residual

along the parameters so that the error of
that constraint is reduced

Computation of the Update Step

Alternative update in the “spirit” of the SGD:
Smoothly deform the path along the
constraints so that the error is reduced

A, OF;
PZAZ]@ _ é%\) Q\

L @
b - e =

®
"‘-.__‘<> Distribute the % Distribute the

rotational error translational error
O P,

. g :
.
s
.
.
Py
Py
.
.
.t
.
L) : E)
: ;‘I

Distribution of the Rotational Error

= In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

* Find a set of incremental rotations so that
the following equality holds:

RiR>---RpnB = R{R5---R),

J O

O 1O e O R B O/O /
Oo— R R,

R1 Ro Rn R/]_ 2

t ot v]

rotations along the path | fraction of the corrected terms for the rotations

rotational

residual in the

local frame

Distributing the Rotational Residual

= Assume that the first node is the reference frame

= We want a correcting rotation with a single axis

= |Let A;be the orientation of the i-th node in the
global reference frame

with a decomposition of the rotational residual
into a chain of incremental rotations obtained by
spherical linear interpolation (slerp)

Q Q1Q2 - Qn
Q. sIerp(Q,uk_l)Tslerp(Q,uk) uw € [0...)]

= Slerp has been designed for 3d animation:
constant speed motion along a circle arc

What is the SLERP?

= SLERP = Spherical LinEar inteRPolation

= Introduced by Ken Shoemake for
interpolations in 3D animations

= Constant speed motion along a circle arc
with unit radius

= Properties:

R = slerp(R,u)
axisOf(R)) = axisOf(R)
angleOf(R') = wu-angleOf(R)

Distributing the Rotational Residual

= Given the @, , we obtain
AL =Q1...Qr = Q1:5A%
= as well as
Ry = AL 4
= and can then solve:

R} Q1R
R, = (Q1R1)'Q12R1.20=R{Q{Q1Q2R1R>

R, = [(R1:5-1)' QLR1._1]Rs

Distributing the Rotational Residual
= Resulting update rule
R;c — (Rl:k—l)TQle:k

= It can be shown that the change in each
rotational residual is bounded by

Ary 1 < [angleOf(Qy)]

= This bounds a potentially introduced error
at node k£ when correcting a chain of poses
including &

How to Determine u,?

= The values of u, describe the relative distribution of
the error along the chain

Qr = slerp(Q,up_1) slerp(Q,us) wel0...)]

= Here, we need to consider the uncertainty of the
constraints

> dy

meP; i Am<k

> dml} _

mGPij

uE = Min (1, >\|'Pz'j|)

dm = > _ min[eigen(£2;,)]
(L,m)
all constraints connecting m

= This assumes roughly spherical covariances!

Distributing the Translational Error

= That is trivial
= Just scale the X, y, z dimension

Summary of the Algorithm

= Decompose the problem according to the
tree parameterization

= Loop:

= Select a constraint

= Randomly

= Alternative: sample inverse proportional to
the number of nodes involved in the update

= Compute the nodes involved in the update
= Nodes according to the parameterization tree

= Reduce the error for this sub-problem
= Reduce the rotational error (slerp)
= Reduce the translational error

Complexity

= In each iteration, the approach considers all
constraints

= Each constraint optimization step requires to update
a set of nodes (on average: the average “path
length according to the tree)

= This results in a complexity per iteration of

O(M -1)
.

(parameterization tree)

Cost of a Constraint Update

Operations per constraint

18

16 |
14 t
12 t

10

"Olson’s approlach

Our approach, original problem =s========= -

[an IR N0 B S &) N © o]
|| LI

500000 le+06 1.5e+06
Number of Nodes

~ O(M -1og(N))

2e+06

Node Reduction

Complexity grows with the length of the
trajectory

Bad for life-long learning

Idea: Combine constraints between nodes
if the robot is well-localized

Qi =)+
5 = Qs +Psl))

Similar to adding rigid constraints

Complexity depends only on the size if the
environment, not the length of the trajectory

Simulated Experiment

Chi”2/constraint

1680

1e

Highly connected
graph

Poor initial guess
2200 nodes
8600 constraints

Spheres with Different Noise

initialization 10 iterations 50 iterations 300 iterations
1000
.g 100
g 10
g
2 1
§ 0.1
0.01
0 50 100 150 200 250 300
interation
100000
£ 10000 |
£ 1000
g 100
3
= 10 L
g 1 F
0.1
0 50 100 150 200 250 300
interation
100000
E 10000
: 1000
5
2 100 |
Lf:';a\'_“'\’m: g 10 |
1

(=]
wn
o

100 150 200 250 300
interation

Mapping the EPFL Campus

EPFL campus

= 10km long trajectory with 3D laser scans
= Not easily tractable by most standard optimizers

Mapping the EPFL Campus

TORO vs. Olson’ s Approach

Olson’ s approach

1 iteratio 10 iterations 50 iterations 100 iterations 300 iterations

TORO

TORO vs. Olson’ s Approach

10000
1000
E
8 100
v
c
c
o
3]
Q,
S 1
E
L
0.1 |
0.01

10 |

T

T

Olson’s apf)roach —

‘_!Tree approach + node reduction ——

L 3

i

¥
¥
s
¥
5 !;"""’ .
*::xsx:n:nnsnnuu

Ey
M K M K K M

Tree approach ——

20

40 60 80
iteration

100

error per constraint

10000
1000
100

0.01
0.001
le-04

Olson’s approach (big noise)
Tree approach (big noise)
Olson’s approach (small noise) ————
Tree approach (small noise) -

g ——]
0 2000 4000 6000 8000
iteration

10000

Time Comparison (2D)

1e4+06 + | | " Olson’s algoritﬁm ——
. Olson’s algorithm, spheric covariances T—1
A, 100000 F MILR
5 Our approach I
= 10000 r Our approach with node reduction
£ 1000 |
» _
= 100
9] —
£ 10 | . _
(: —
S 1 F N N
2 - i
2 0.1
]

oor 1T
0.001 '

3.7k 30k 64k 360k 720k 1.9M

number of constraints

Robust to the Initial Guess

= Random initial guess

» Intel datatset as the basis for 16 floors
distributed over 4 towers

initial configuration intermediate result final result (50 iterations)

TORO Summary ﬁ

= Robust to bad initial configurations

= Efficient technique for ML map estimation
= Works in 2D and 3D

= Scales up to millions of constraints

= Available at OpenSLAM.org
http://www.openslam.org/toro.html|

Drawbacks of TORO

The slerp-based update rule optimizes
rotations and translations separately.

It assume roughly spherical covariance
ellipses.

It is a maximum likelihood technique.
No covariance estimates!

Approach of Tipaldi et al. accurately
estimates the covariances after convergence

[Tipaldi et al., 2007]

Data Association

= TORO computes the mean of the distribution
given the data associations

= To determine the data associations, we need
the uncertainty about the nodes’ poses

= Approaches to compute the uncertainties:
= Matrix inversion
= Loopy belief propagation
= Belief propagation on a spanning tree
= Loopy intersection propagation

Graphical SLAM as a GMRF

= Factor the distribution
= local potentials b
» pAirwise potentials {%‘“"”“\’ 4 ""4“‘*%/:7

i
/)

p(x) —% H ¢i(x;) H ¢Z,](m7n])

=1 J =i+1 Gaussian in canonical form

Belief Propagation

= Inference by local message passing
= Jterative process

= Collect messages]
[Y] A
) — g N (D)
1 LI Jt
JEN;
MO = oy M

JEN; !
= Send messages

) i QUi (il | (D) (DN () iigmg}
1 1) 1) \“‘zg) T / \] ? 71

1

Mz(jt) = Ignore the math!

Belief Propagation - Trees

= Exact inference
= Message passing
= Two iterations

= From leaves to root:
variable elimination

= From root to leaves:
back substitution

Belief Propagation - Loops

= Approximation
= Multiple paths

= OQverconfidence

= Correlations between
path A and path B

= How to integrate
information at D?

Covariance Intersection

= Fusion rule for
unknown correlations

= Combine A and B to
obtain C

<H’A7 2A>

Yo = (WET+QAQ-w)EghTE
pe = SowE s+ (1 -w)S5tug)

Loopy Intersection Propagation

Key ideas

= Exact inference on a spanning tree
computed via cutting matrices

= Augment the tree with information
coming from loops within local
potentials (priors)

= Apply belief propagation

Approximation via Cutting
Matrix

= Removal as matrix subtraction

o

= Regular cutting matrix
= Cut all off-tree edges e

0O 0O O O] RN

0

0 Qpp’ 0 Qpp" 0 N

KBD= 0 0 0 0 0 @
DB DD

0 QP8 o qlbPl g

0 0 0 0 0

Fusing Loops with Spanning
Trees

= Estimate A and B

D
blf), =

olBl Ignore the math!
BD

= Fuse the estimates

Mp =
~ | Covariance Intersection!
Mp =

= Compute the priors
P = N1, — M,

Remove Edge and Add Priors

= Removal of the edge and adding priors
realized as a matrix subtraction

G=0 K (A,

BB B BD
o vlf] 0 olfp

Kpp =

DB DD D
b o alfp) - plp)

o OO O
)
o OO O
)
o OO O

/
/
@

LIP - Algorithm

1. Compute a spanning tree
2. Run belief propagation on the tree

3. For every off-tree edge
1. compute the off-tree estimates,
2. compute the new priors, and
3. delete the edge

4. Re-run belief propagation

Results

®
e 2 %
7 - @ --.’.00.."%
[Y-1] .o ‘8
: e ee
E Loopy belief s &;
"ot > ' s tree belief
;: propagation 8 o emtion
2 wom
OQ.. g
‘o0 %o 4
W@Wa
& E‘ﬁsf F A
Overconfident

Too conservative

Results

®
2 % 3
O . ¥
Q9
ot
Q
o
Q
® S
ﬂ intersection

propagation

Conclusions

= TORO - Efficient maximum likelihood
algorithm for 2D and 3D graphs of poses

= NO covariance estimates!

= Approach for recovering the covariance
matrices via belief propagation and
covariance intersection
= Linear time complexity
= Tight estimates
= Generally conservative (not guaranteed!)

