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Graph-based SLAM 
§  SLAM = simultaneous localization and 

mapping 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds to a 

pose of the robot during mapping 
§  Every edge between two nodes corresponds 

to the spatial constraints between them 

§  Goal: Find a configuration of the nodes that 
minimize the error introduced by the 
constraints 



Topics Today 
§  Estimate the Gaussian posterior about the 

poses of the robot using gradient descent 

Two Parts: 
§  Estimate the means via gradient descent 

(maximum likelihood map) 
§  Estimate the covariance matrices via belief 

propagation and covariance intersection 



Problem Formulation 
§  The problem can be described by a graph 

Goal: 
§  Find the assignment of poses to the nodes of the 

graph which minimizes the negative log likelihood 
of the observations: 

nodes 

Observation  
of      from 

error 



Stochastic Gradient Descent 
§  Minimize the error individually for each constraint 

(decomposition of the problem into sub-problems) 
§  Solve one step of each sub-problem  
§  Solutions might be contradictory 
§  The magnitude of the correction decreases with 

each iteration 
§  Learning rate to achieve convergence 

[First introduced in the SLAM community by Olson et al., ’06] 

selected constraint 
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distribute the error over  
a set of involved nodes 
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Preconditioned SGD 
§  Minimize the error individually for each constraint 

(decomposition of the problem into sub-problems) 
§  Solve one step of each sub-problem  
§  Solutions might be contradictory 
§  A solution is found when an equilibrium is reached 
§  Update rule for a single constraint: 

Information matrix Previous solution 

residual Jacobian 

Hessian 

Learning rate Current solution 

[First introduced in the SLAM community by Olson et al., ’06] 



Node Parameterization 
§  How to represent the nodes in the graph? 
§  Impact on which parts need to be updated for a 

single constraint update? 
§  This are to the “sub-problems” in SGD 
§  Transform the problem into a different space so 

that: 
§  the structure of the problem is exploited 
§  the calculations become fast and easy  

Mapping function 

poses parameters 

transformed problem 

parameters 



Parameterization of Olson 
§  Incremental parameterization: 

§  Results directly from the trajectory takes by 
the robot 

§  Problem: for optimizing a constraint between 
the nodes i and k, one needs to updates the 
nodes j = i, …, k ignoring the topology of the 
environment 
 

poses parameters 



Alternative Parameterization 
§  Exploit the topology of the space to compute 

the parameterization 
§  Idea: “Loops should be one sub-problem” 
§  Such a parameterization can be extracted 

from the graph topology itself 



Tree Parameterization 
§  How should such a problem  

decomposition look like? 



Tree Parameterization 
§  Use a spanning tree! 



Tree Parameterization 
§  Construct a spanning tree from the graph 
§  The mapping function between the poses and the 

parameters is: 

§  Error of a constraint in the new parameterization 

Only variables along the path of a  
constraint are involved in the update 



Stochastic Gradient Descent using 
the Tree Parameterization 

§  The tree parameterization leads to several 
smaller problems which are either: 
§  constraints on the tree (“open loop”) 
§  constraints not in the tree (“a loop closure”) 

§  Each SGD equation independently solves 
one sub-problem at a time 

§  The solutions are integrated via the learning 
rate 



Computation of the Update Step 

§  3D rotations lead to a nonlinear system 
§  Update the poses directly according to the SGD 

equation may lead to poor convergence  
§  This increases with the connectivity of the graph 

§  Key idea in the SGD update: 
 

 
 
   Idea: distribute a fraction of the residual 

along the parameters so that the error of 
that constraint is reduced 



Computation of the Update Step 

Alternative update in the “spirit” of the SGD:  
Smoothly deform the path along the 
constraints so that the error is reduced 

Distribute the 
rotational error 

Distribute the 
translational error 



Distribution of the Rotational Error 

§  In 3D, the rotational error cannot be simply 
added to the parameters because the 
rotations are not commutative 

§  Find a set of incremental rotations so that 
the following equality holds: 

rotations along the path fraction of the 
rotational 
residual in the 
local frame 

corrected terms for the rotations 



Distributing the Rotational Residual 
§  Assume that the first node is the reference frame 
§  We want a correcting rotation with a single axis 
§  Let    be the orientation of the i-th node in the 

global reference frame 
 

 
with a decomposition of the rotational residual 
into a chain of incremental rotations obtained by 
spherical linear interpolation (slerp) 

§  Slerp has been designed for 3d animation: 
constant speed motion along a circle arc  



What is the SLERP? 
§  SLERP = Spherical LinEar inteRPolation 
§  Introduced by Ken Shoemake for 

interpolations in 3D animations 
§  Constant speed motion along a circle arc 

with unit radius 
§  Properties: 



Distributing the Rotational Residual 

§  Given the     , we obtain 

§  as well as 

§  and can then solve: 



Distributing the Rotational Residual 

§  Resulting update rule 

§  It can be shown that the change in each 
rotational residual is bounded by 

§  This bounds a potentially introduced error  
at node k when correcting a chain of poses 
including k 



How to Determine uk? 
§  The values of uk describe the relative distribution of 

the error along the chain 

§  Here, we need to consider the uncertainty of the 
constraints 

§  This assumes roughly spherical covariances! 

all constraints connecting m 



Distributing the Translational Error 

§  That is trivial 
§  Just scale the x, y, z dimension  

 
 

scale 



Summary of the Algorithm 
§  Decompose the problem according to the 

tree parameterization 
§  Loop: 

§  Select a constraint 
§  Randomly 
§  Alternative: sample inverse proportional to  

the number of nodes involved in the update 
§  Compute the nodes involved in the update 

§  Nodes according to the parameterization tree 

§  Reduce the error for this sub-problem 
§  Reduce the rotational error (slerp) 
§  Reduce the translational error 



Complexity 
§  In each iteration, the approach considers all 

constraints 

§  Each constraint optimization step requires to update 
a set of nodes (on average: the average “path 
length according to the tree) 

§  This results in a complexity per iteration of 

#constrains avg. path length 
(parameterization tree) 



Cost of a Constraint Update 



Node Reduction 
§  Complexity grows with the length of the 

trajectory 
§  Bad for life-long learning 
§  Idea: Combine constraints between nodes 

if the robot is well-localized 

§  Similar to adding rigid constraints 
§  Complexity depends only on the size if the 

environment, not the length of the trajectory 



Simulated Experiment 

§  Highly connected 
graph 

§  Poor initial guess 
§  2200 nodes 
§  8600 constraints 



Spheres with Different Noise 



EPFL campus 

Mapping the EPFL Campus 

§  10km long trajectory with 3D laser scans 
§  Not easily tractable by most standard optimizers 



Mapping the EPFL Campus 



TORO vs. Olson’s Approach 

TORO 

Olson’s approach 

1 iteration              10 iterations                  50 iterations                 100 iterations                300 iterations 



TORO vs. Olson’s Approach 



Time Comparison (2D) 



Robust to the Initial Guess 
§  Random initial guess 
§  Intel datatset as the basis for 16 floors 

distributed over 4 towers 

initial configuration intermediate result final result (50 iterations) 



TORO Summary 

§ Robust to bad initial configurations 

§ Efficient technique for ML map estimation 
§ Works in 2D and 3D 
§ Scales up to millions of constraints  
§ Available at OpenSLAM.org 

http://www.openslam.org/toro.html 
 



Drawbacks of TORO 
§  The slerp-based update rule optimizes 

rotations and translations separately. 
§  It assume roughly spherical covariance 

ellipses. 

§  It is a maximum likelihood technique. 
No covariance estimates! 

§  Approach of Tipaldi et al. accurately 
estimates the covariances after convergence 
[Tipaldi et al., 2007] 



Data Association 
§  TORO computes the mean of the distribution 

given the data associations 
§  To determine the data associations, we need  

the uncertainty about the nodes’ poses 
§  Approaches to compute the uncertainties: 

§  Matrix inversion 
§  Loopy belief propagation 
§  Belief propagation on a spanning tree 
§  Loopy intersection propagation 

 



Graphical SLAM as a GMRF 
§  Factor the distribution 

§  local potentials 
§  pairwise potentials 

Gaussian in canonical form  



Belief Propagation 
§  Inference by local message passing 
§  Iterative process 

§  Collect messages 

§  Send messages 

C B 

D 

A 

Ignore the math! 



Belief Propagation - Trees 
§  Exact inference  
§  Message passing 
§  Two iterations 

§  From leaves to root:  
variable elimination 

§  From root to leaves:  
back substitution 

A 

C 

D 

B 



Belief Propagation - Loops 
§  Approximation 
§  Multiple paths 
§  Overconfidence 

§  Correlations between 
path A and path B 

§  How to integrate 
information at D? 

A 

C 

D 

B 

A 

B 



Covariance Intersection 

§  Fusion rule for 
unknown correlations 

§  Combine A and B to 
obtain C 

C 

A B 



Loopy Intersection Propagation 
Key ideas 
§  Exact inference on a spanning tree 

computed via cutting matrices 
§  Augment the tree with information 

coming from loops within local 
potentials (priors) 

§  Apply belief propagation 



Approximation via Cutting 
Matrix 
§  Removal as matrix subtraction 

§  Regular cutting matrix 
§  Cut all off-tree edges 

A 

C 

D 

B 



Fusing Loops with Spanning 
Trees 
§  Estimate A and B 

§  Fuse the estimates 

§  Compute the priors 

A 

C 

D 

B 

A 

B 

 
Ignore the math! 

 

 

Covariance Intersection! 

 



Remove Edge and Add Priors 
§  Removal of the edge and adding priors 

realized as a matrix subtraction 
 A 

C 

D 

B 



LIP – Algorithm  
1.  Compute a spanning tree 
2.  Run belief propagation on the tree 
3.  For every off-tree edge 

1.  compute the off-tree estimates, 
2.  compute the new priors, and 

3.  delete the edge 

4.  Re-run belief propagation 



Results 

Loopy belief 
propagation 

Spanning 
tree belief 
propagation 

Overconfident Too conservative 



Results 

Loopy 
intersection 
propagation 



Conclusions 
§  TORO - Efficient maximum likelihood 

algorithm for 2D and 3D graphs of poses 
§  No covariance estimates! 
§  Approach for recovering the covariance 

matrices via belief propagation and 
covariance intersection 
§  Linear time complexity 
§  Tight estimates 
§  Generally conservative (not guaranteed!) 


