
Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

TORO – SLAM with Gradient
Descent

Advanced Techniques
for Mobile Robotics

Graph-based SLAM
§  SLAM = simultaneous localization and

mapping

§  Use a graph to represent the problem
§  Every node in the graph corresponds to a

pose of the robot during mapping
§  Every edge between two nodes corresponds

to the spatial constraints between them

§  Goal: Find a configuration of the nodes that
minimize the error introduced by the
constraints

Topics Today
§  Estimate the Gaussian posterior about the

poses of the robot using gradient descent

Two Parts:
§  Estimate the means via gradient descent

(maximum likelihood map)
§  Estimate the covariance matrices via belief

propagation and covariance intersection

Problem Formulation
§  The problem can be described by a graph

Goal:
§  Find the assignment of poses to the nodes of the

graph which minimizes the negative log likelihood
of the observations:

nodes

Observation
of from

error

Stochastic Gradient Descent
§  Minimize the error individually for each constraint

(decomposition of the problem into sub-problems)
§  Solve one step of each sub-problem
§  Solutions might be contradictory
§  The magnitude of the correction decreases with

each iteration
§  Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]

selected constraint

Stochastic Gradient Descent
§  Minimize the error individually for each constraint

(decomposition of the problem into sub-problems)
§  Solve one step of each sub-problem
§  Solutions might be contradictory
§  The magnitude of the correction decreases with

each iteration
§  Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]

distribute the error over
a set of involved nodes

Stochastic Gradient Descent
§  Minimize the error individually for each constraint

(decomposition of the problem into sub-problems)
§  Solve one step of each sub-problem
§  Solutions might be contradictory
§  The magnitude of the correction decreases with

each iteration
§  Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]

Preconditioned SGD
§  Minimize the error individually for each constraint

(decomposition of the problem into sub-problems)
§  Solve one step of each sub-problem
§  Solutions might be contradictory
§  A solution is found when an equilibrium is reached
§  Update rule for a single constraint:

Information matrix Previous solution

residual Jacobian

Hessian

Learning rate Current solution

[First introduced in the SLAM community by Olson et al., ’06]

Node Parameterization
§  How to represent the nodes in the graph?
§  Impact on which parts need to be updated for a

single constraint update?
§  This are to the “sub-problems” in SGD
§  Transform the problem into a different space so

that:
§  the structure of the problem is exploited
§  the calculations become fast and easy

Mapping function

poses parameters

transformed problem

parameters

Parameterization of Olson
§  Incremental parameterization:

§  Results directly from the trajectory takes by
the robot

§  Problem: for optimizing a constraint between
the nodes i and k, one needs to updates the
nodes j = i, …, k ignoring the topology of the
environment

poses parameters

Alternative Parameterization
§  Exploit the topology of the space to compute

the parameterization
§  Idea: “Loops should be one sub-problem”
§  Such a parameterization can be extracted

from the graph topology itself

Tree Parameterization
§  How should such a problem

decomposition look like?

Tree Parameterization
§  Use a spanning tree!

Tree Parameterization
§  Construct a spanning tree from the graph
§  The mapping function between the poses and the

parameters is:

§  Error of a constraint in the new parameterization

Only variables along the path of a
constraint are involved in the update

Stochastic Gradient Descent using
the Tree Parameterization

§  The tree parameterization leads to several
smaller problems which are either:
§  constraints on the tree (“open loop”)
§  constraints not in the tree (“a loop closure”)

§  Each SGD equation independently solves
one sub-problem at a time

§  The solutions are integrated via the learning
rate

Computation of the Update Step

§  3D rotations lead to a nonlinear system
§  Update the poses directly according to the SGD

equation may lead to poor convergence
§  This increases with the connectivity of the graph

§  Key idea in the SGD update:

 Idea: distribute a fraction of the residual

along the parameters so that the error of
that constraint is reduced

Computation of the Update Step

Alternative update in the “spirit” of the SGD:
Smoothly deform the path along the
constraints so that the error is reduced

Distribute the
rotational error

Distribute the
translational error

Distribution of the Rotational Error

§  In 3D, the rotational error cannot be simply
added to the parameters because the
rotations are not commutative

§  Find a set of incremental rotations so that
the following equality holds:

rotations along the path fraction of the
rotational
residual in the
local frame

corrected terms for the rotations

Distributing the Rotational Residual
§  Assume that the first node is the reference frame
§  We want a correcting rotation with a single axis
§  Let be the orientation of the i-th node in the

global reference frame

with a decomposition of the rotational residual
into a chain of incremental rotations obtained by
spherical linear interpolation (slerp)

§  Slerp has been designed for 3d animation:
constant speed motion along a circle arc

What is the SLERP?
§  SLERP = Spherical LinEar inteRPolation
§  Introduced by Ken Shoemake for

interpolations in 3D animations
§  Constant speed motion along a circle arc

with unit radius
§  Properties:

Distributing the Rotational Residual

§  Given the , we obtain

§  as well as

§  and can then solve:

Distributing the Rotational Residual

§  Resulting update rule

§  It can be shown that the change in each
rotational residual is bounded by

§  This bounds a potentially introduced error
at node k when correcting a chain of poses
including k

How to Determine uk?
§  The values of uk describe the relative distribution of

the error along the chain

§  Here, we need to consider the uncertainty of the
constraints

§  This assumes roughly spherical covariances!

all constraints connecting m

Distributing the Translational Error

§  That is trivial
§  Just scale the x, y, z dimension

scale

Summary of the Algorithm
§  Decompose the problem according to the

tree parameterization
§  Loop:

§  Select a constraint
§  Randomly
§  Alternative: sample inverse proportional to

the number of nodes involved in the update
§  Compute the nodes involved in the update

§  Nodes according to the parameterization tree

§  Reduce the error for this sub-problem
§  Reduce the rotational error (slerp)
§  Reduce the translational error

Complexity
§  In each iteration, the approach considers all

constraints

§  Each constraint optimization step requires to update
a set of nodes (on average: the average “path
length according to the tree)

§  This results in a complexity per iteration of

#constrains avg. path length
(parameterization tree)

Cost of a Constraint Update

Node Reduction
§  Complexity grows with the length of the

trajectory
§  Bad for life-long learning
§  Idea: Combine constraints between nodes

if the robot is well-localized

§  Similar to adding rigid constraints
§  Complexity depends only on the size if the

environment, not the length of the trajectory

Simulated Experiment

§  Highly connected
graph

§  Poor initial guess
§  2200 nodes
§  8600 constraints

Spheres with Different Noise

EPFL campus

Mapping the EPFL Campus

§  10km long trajectory with 3D laser scans
§  Not easily tractable by most standard optimizers

Mapping the EPFL Campus

TORO vs. Olson’s Approach

TORO

Olson’s approach

1 iteration 10 iterations 50 iterations 100 iterations 300 iterations

TORO vs. Olson’s Approach

Time Comparison (2D)

Robust to the Initial Guess
§  Random initial guess
§  Intel datatset as the basis for 16 floors

distributed over 4 towers

initial configuration intermediate result final result (50 iterations)

TORO Summary

§ Robust to bad initial configurations

§ Efficient technique for ML map estimation
§ Works in 2D and 3D
§ Scales up to millions of constraints
§ Available at OpenSLAM.org

http://www.openslam.org/toro.html

Drawbacks of TORO
§  The slerp-based update rule optimizes

rotations and translations separately.
§  It assume roughly spherical covariance

ellipses.

§  It is a maximum likelihood technique.
No covariance estimates!

§  Approach of Tipaldi et al. accurately
estimates the covariances after convergence
[Tipaldi et al., 2007]

Data Association
§  TORO computes the mean of the distribution

given the data associations
§  To determine the data associations, we need

the uncertainty about the nodes’ poses
§  Approaches to compute the uncertainties:

§  Matrix inversion
§  Loopy belief propagation
§  Belief propagation on a spanning tree
§  Loopy intersection propagation

Graphical SLAM as a GMRF
§  Factor the distribution

§  local potentials
§  pairwise potentials

Gaussian in canonical form

Belief Propagation
§  Inference by local message passing
§  Iterative process

§  Collect messages

§  Send messages

C B

D

A

Ignore the math!

Belief Propagation - Trees
§  Exact inference
§  Message passing
§  Two iterations

§  From leaves to root:
variable elimination

§  From root to leaves:
back substitution

A

C

D

B

Belief Propagation - Loops
§  Approximation
§  Multiple paths
§  Overconfidence

§  Correlations between
path A and path B

§  How to integrate
information at D?

A

C

D

B

A

B

Covariance Intersection

§  Fusion rule for
unknown correlations

§  Combine A and B to
obtain C

C

A B

Loopy Intersection Propagation
Key ideas
§  Exact inference on a spanning tree

computed via cutting matrices
§  Augment the tree with information

coming from loops within local
potentials (priors)

§  Apply belief propagation

Approximation via Cutting
Matrix
§  Removal as matrix subtraction

§  Regular cutting matrix
§  Cut all off-tree edges

A

C

D

B

Fusing Loops with Spanning
Trees
§  Estimate A and B

§  Fuse the estimates

§  Compute the priors

A

C

D

B

A

B

Ignore the math!

Covariance Intersection!

Remove Edge and Add Priors
§  Removal of the edge and adding priors

realized as a matrix subtraction
 A

C

D

B

LIP – Algorithm
1.  Compute a spanning tree
2.  Run belief propagation on the tree
3.  For every off-tree edge

1.  compute the off-tree estimates,
2.  compute the new priors, and

3.  delete the edge

4.  Re-run belief propagation

Results

Loopy belief
propagation

Spanning
tree belief
propagation

Overconfident Too conservative

Results

Loopy
intersection
propagation

Conclusions
§  TORO - Efficient maximum likelihood

algorithm for 2D and 3D graphs of poses
§  No covariance estimates!
§  Approach for recovering the covariance

matrices via belief propagation and
covariance intersection
§  Linear time complexity
§  Tight estimates
§  Generally conservative (not guaranteed!)

