Advanced Techniques for Mobile Robotics TORO – SLAM with Gradient Descent

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Graph-based SLAM

- SLAM = simultaneous localization and mapping
- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to the spatial constraints between them
- Goal: Find a configuration of the nodes that minimize the error introduced by the constraints

Topics Today

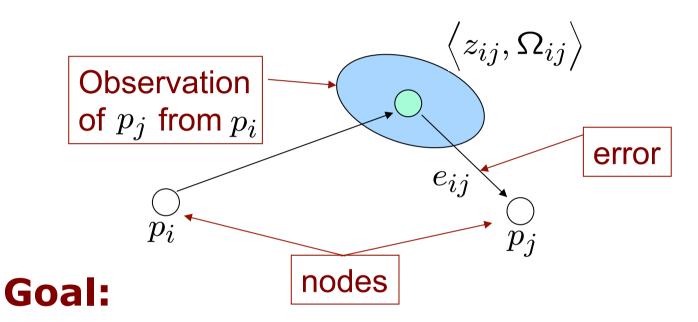
 Estimate the Gaussian posterior about the poses of the robot using gradient descent

Two Parts:

- Estimate the means via gradient descent (maximum likelihood map)
- Estimate the covariance matrices via belief propagation and covariance intersection

Problem Formulation

The problem can be described by a graph



 Find the assignment of poses to the nodes of the graph which minimizes the negative log likelihood of the observations:

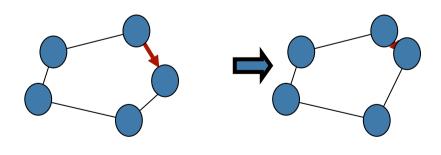
$$\widehat{\mathbf{p}} = \operatorname{argmin} \sum_{ij} e_{ij}^T \Omega_{ij} e_{ij}$$

Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

Stochastic Gradient Descent

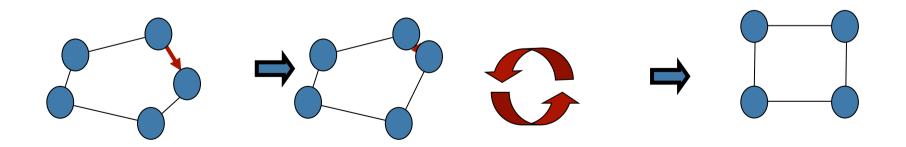
- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence



distribute the error over a set of involved nodes

Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence



Preconditioned SGD

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- A solution is found when an equilibrium is reached
- Update rule for a single constraint:

Previous solutionHessianInformation matrix
$$\mathbf{x}^{t+1} = \mathbf{x}^t + \lambda \cdot \mathbf{H}^{-1} J_{ij}^T \Omega_{ij} r_{ij}$$
Current solutionLearning rateJacobianresidual

Node Parameterization

- How to represent the nodes in the graph?
- Impact on which parts need to be updated for a single constraint update?
- This are to the "sub-problems" in SGD
- Transform the problem into a different space so that:
 - the structure of the problem is exploited
 - the calculations become fast and easy

parametersposesparameters
$$\mathbf{x} = g(\mathbf{p}) \leftrightarrow \mathbf{p} = g^{-1}(\mathbf{x})$$
 $\mathbf{x}^* = \arg\min_{\mathbf{x}} \sum_{i,j} e'_{ij}(\mathbf{x})^T \Omega_{ij} e'_{ij}(\mathbf{x})$ Mapping functiontransformed problem

Parameterization of Olson

Incremental parameterization:

$$x_i = p_i - p_{i-1}$$
parameters poses

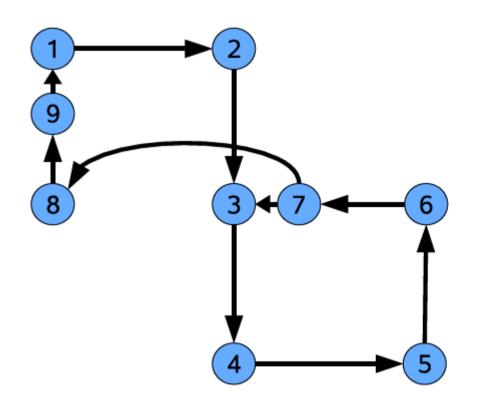
- Results directly from the trajectory takes by the robot
- Problem: for optimizing a constraint between the nodes *i* and *k*, one needs to updates the nodes *j* = *i*, ..., *k* ignoring the topology of the environment

Alternative Parameterization

- Exploit the topology of the space to compute the parameterization
- Idea: "Loops should be one sub-problem"
- Such a parameterization can be extracted from the graph topology itself

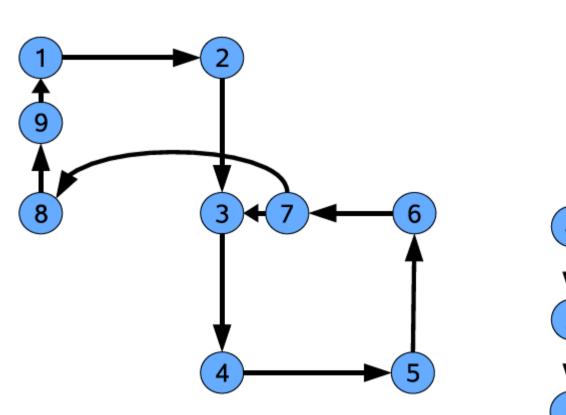
Tree Parameterization

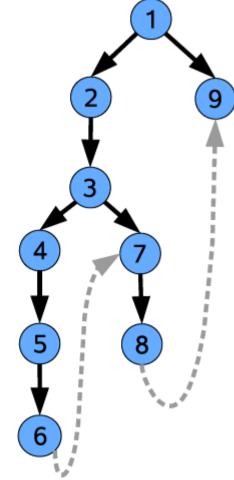
How should such a problem decomposition look like?



Tree Parameterization

• Use a spanning tree!



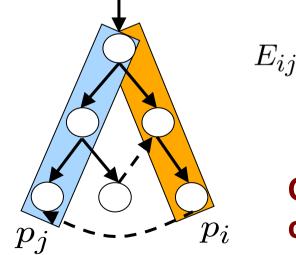


Tree Parameterization

- Construct a spanning tree from the graph
- The mapping function between the poses and the parameters is:

$$x_i = p_i \ominus p_{\mathsf{parent}(i)}$$
 $X_i = P_{\mathsf{parent}(i)}^{-1} P_i$

Error of a constraint in the new parameterization

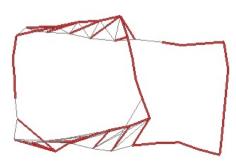


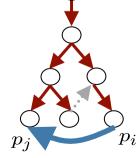
$$E_{ij} = \Delta_{ij}^{-1} \cdot \frac{\mathsf{UpChain}^{-1}}{\mathsf{DownChain}}$$

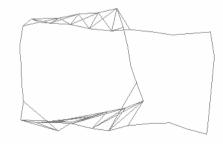
Only variables along the path of a constraint are involved in the update

Stochastic Gradient Descent using the Tree Parameterization

- The tree parameterization leads to several smaller problems which are either:
 - constraints on the tree ("open loop")
 - constraints not in the tree ("a loop closure")
- Each SGD equation independently solves one sub-problem at a time
- The solutions are integrated via the learning rate







Computation of the Update Step

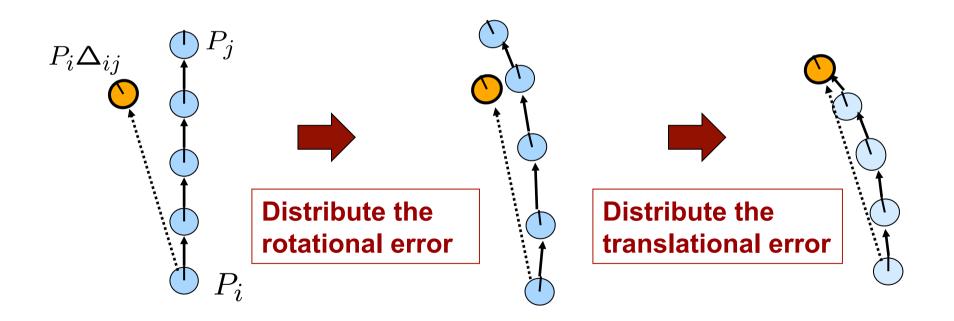
- 3D rotations lead to a nonlinear system
 - Update the poses directly according to the SGD equation may lead to poor convergence
 - This increases with the connectivity of the graph
- Key idea in the SGD update:

$$\Delta \mathbf{x} = \lambda \cdot \mathbf{H}^{-1} J_{ij}^T \Omega_{ij} r_{ij}$$

Idea: distribute a fraction of the residual along the parameters so that the error of that constraint is reduced

Computation of the Update Step

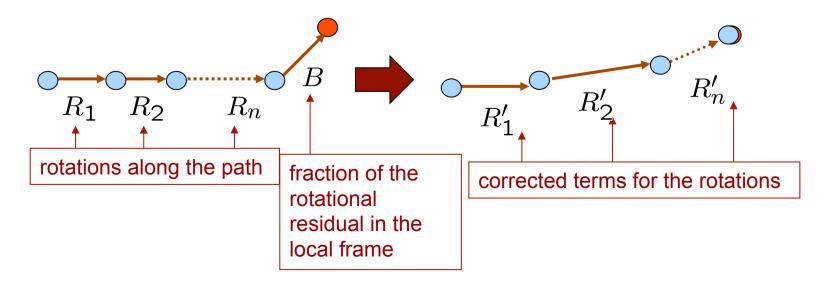
Alternative update in the "spirit" of the SGD: Smoothly deform the path along the constraints so that the error is reduced



Distribution of the Rotational Error

- In 3D, the rotational error cannot be simply added to the parameters because the rotations are not commutative
- Find a set of incremental rotations so that the following equality holds:

$$R_1 R_2 \cdots R_n B = R'_1 R'_2 \cdots R'_n$$



Distributing the Rotational Residual

- Assume that the first node is the reference frame
- We want a correcting rotation with a single axis
- Let A_i be the orientation of the i-th node in the global reference frame

$$A'_n = A_n B = Q A_n$$

with a decomposition of the rotational residual into a chain of incremental rotations obtained by spherical linear interpolation (slerp)

$$Q = Q_1 Q_2 \cdots Q_n$$

$$Q_k = \text{slerp}(Q, u_{k-1})^T \text{slerp}(Q, u_k) \qquad u \in [0 \dots \lambda]$$

 Slerp has been designed for 3d animation: constant speed motion along a circle arc

What is the SLERP?

- SLERP = Spherical LinEar inteRPolation
- Introduced by Ken Shoemake for interpolations in 3D animations
- Constant speed motion along a circle arc with unit radius
- Properties:

$$\mathcal{R}' := \operatorname{slerp}(\mathcal{R}, u)$$

axisOf(\mathcal{R}') = axisOf(\mathcal{R})
angleOf(\mathcal{R}') = $u \cdot \operatorname{angleOf}(\mathcal{R})$

Distributing the Rotational Residual

• Given the Q_k , we obtain

$$A'_k = Q_1 \dots Q_k = Q_{1:k} A_k$$

as well as

$$R'_k = A'^T_{k-1}A'_k$$

and can then solve:

$$R'_{1} = Q_{1}R_{1}$$

$$R'_{2} = (Q_{1}R_{1})^{T}Q_{1:2}R_{1:2} = R_{1}^{T}Q_{1}^{T}Q_{1}Q_{2}R_{1}R_{2}$$

$$\vdots$$

$$R'_{k} = [(R_{1:k-1})^{T}Q_{k}R_{1:k-1}]R_{k}$$

Distributing the Rotational Residual

Resulting update rule

$$R'_k = (R_{1:k-1})^T Q_k R_{1:k}$$

 It can be shown that the change in each rotational residual is bounded by

$$\Delta r'_{k,k-1} \leq |\text{angleOf}(Q_k)|$$

 This bounds a potentially introduced error at node k when correcting a chain of poses including k

How to Determine u_k ?

 The values of u_k describe the relative distribution of the error along the chain

$$Q_k = \operatorname{slerp}(Q, u_{k-1})^T \operatorname{slerp}(Q, u_k) \qquad u \in [0 \dots \lambda]$$

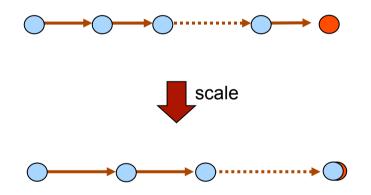
Here, we need to consider the uncertainty of the constraints

$$u_{k} = \min\left(1, \lambda | \mathcal{P}_{ij}|\right) \left[\sum_{m \in \mathcal{P}_{ij} \wedge m \leq k} d_{m}^{-1}\right] \left[\sum_{m \in \mathcal{P}_{ij}} d_{m}^{-1}\right]^{-1}$$
$$d_{m} = \sum_{\langle l, m \rangle} \min\left[\operatorname{eigen}(\Omega_{lm})\right]$$
all constraints connecting m

This assumes roughly spherical covariances!

Distributing the Translational Error

- That is trivial
- Just scale the x, y, z dimension



Summary of the Algorithm

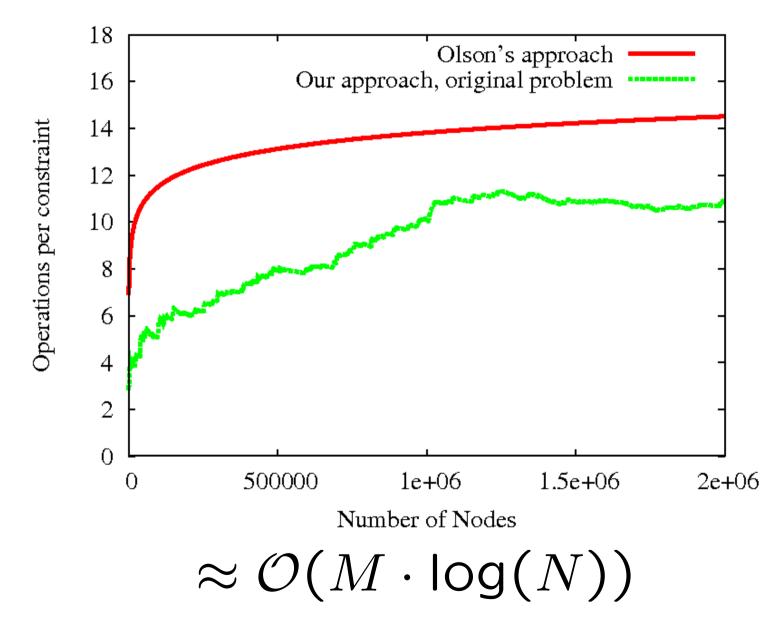
- Decompose the problem according to the tree parameterization
- Loop:
 - Select a constraint
 - Randomly
 - Alternative: sample inverse proportional to the number of nodes involved in the update
 - Compute the nodes involved in the update
 - Nodes according to the parameterization tree
 - Reduce the error for this sub-problem
 - Reduce the rotational error (slerp)
 - Reduce the translational error

Complexity

- In each iteration, the approach considers all constraints
- Each constraint optimization step requires to update a set of nodes (on average: the average "path length according to the tree)
- This results in a complexity per iteration of

$$\mathcal{O}(M \cdot l)$$
#constrains avg. path length (parameterization tree)

Cost of a Constraint Update



Node Reduction

- Complexity grows with the length of the trajectory
- Bad for life-long learning
- Idea: Combine constraints between nodes if the robot is well-localized

$$\Omega_{ij} = \Omega_{ij}^{(1)} + \Omega_{ij}^{(2)}$$

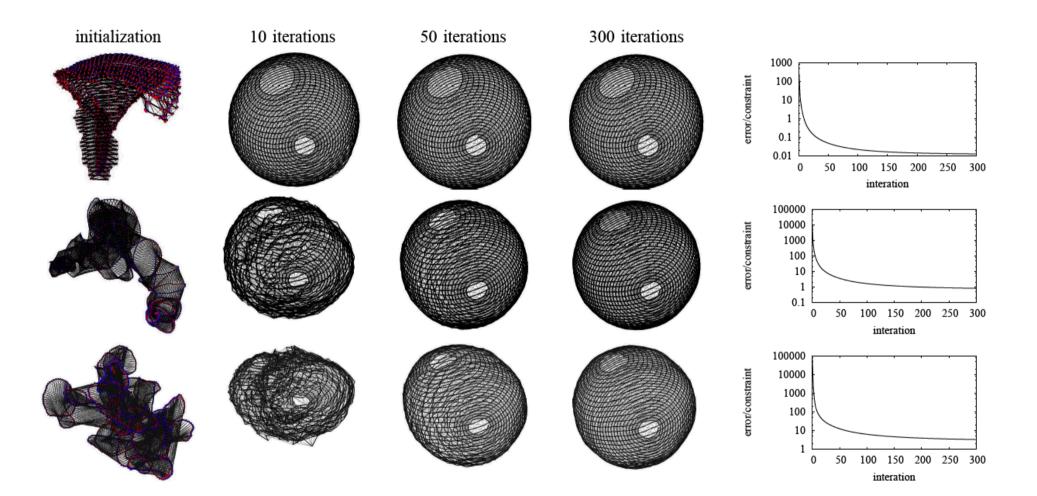
$$\delta_{ij} = \Omega_{ij}^{-1} (\Omega_{ij}^{(1)} \delta_{ij}^{(1)} + \Omega_{ij}^{(2)} \delta_{ij}^{(2)})$$

- Similar to adding rigid constraints
- Complexity depends only on the size if the environment, not the length of the trajectory

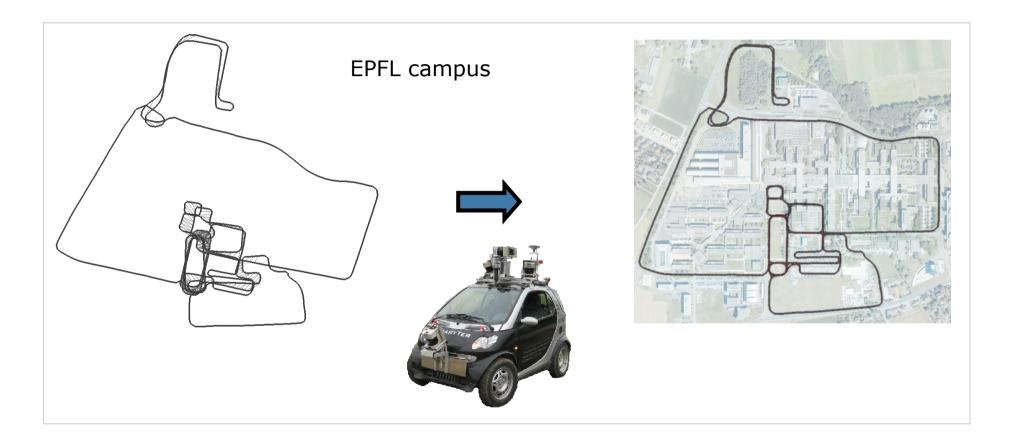
Simulated Experiment



Spheres with Different Noise

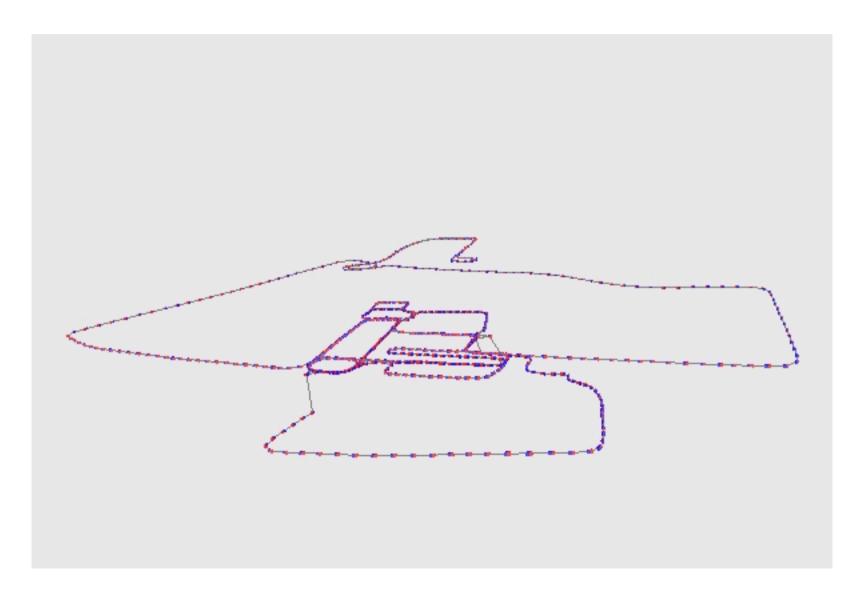


Mapping the EPFL Campus

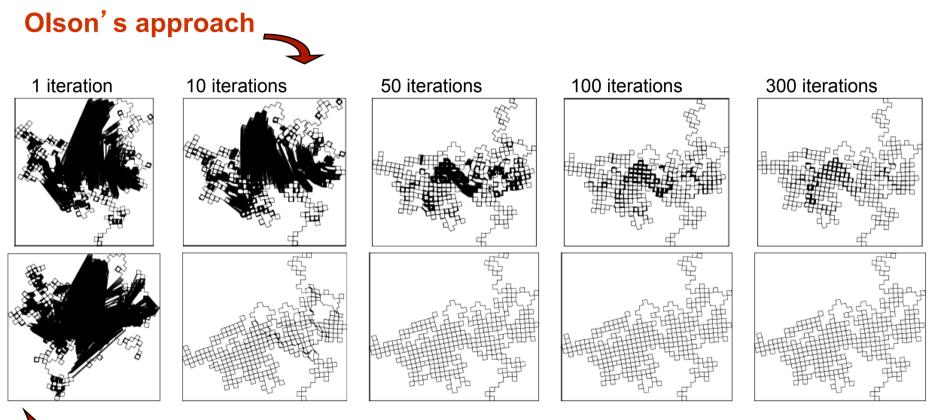


- 10km long trajectory with 3D laser scans
- Not easily tractable by most standard optimizers

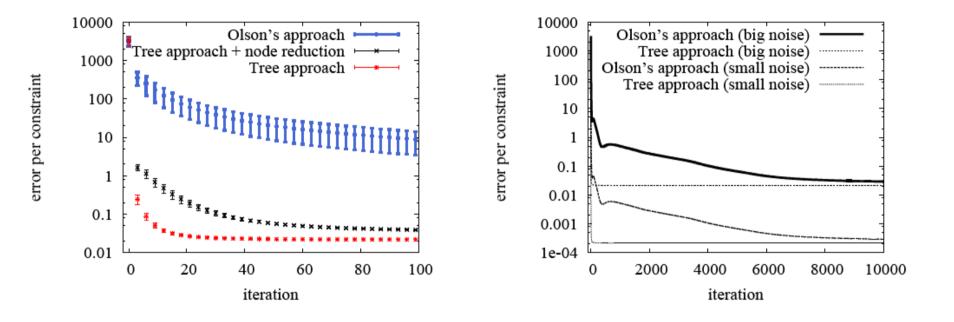
Mapping the EPFL Campus

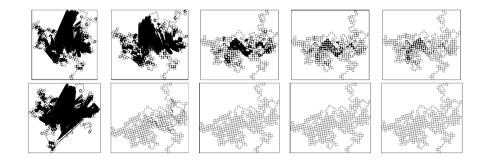


TORO vs. Olson's Approach

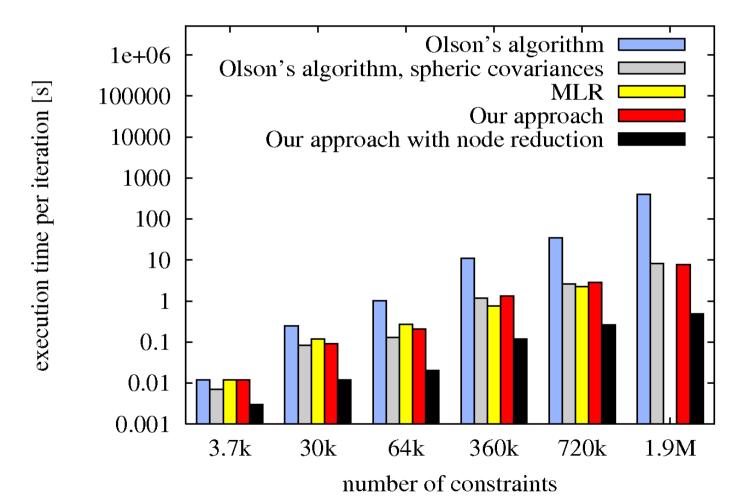


TORO vs. Olson's Approach



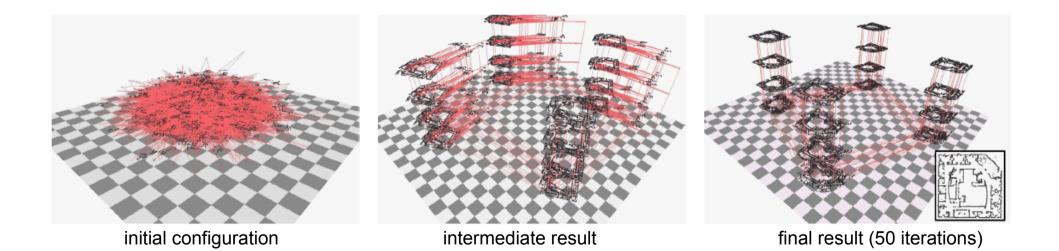


Time Comparison (2D)



Robust to the Initial Guess

- Random initial guess
- Intel datatset as the basis for 16 floors distributed over 4 towers



TORO Summary

- Robust to bad initial configurations
- Efficient technique for ML map estimation
- Works in 2D and 3D
- Scales up to millions of constraints
- Available at OpenSLAM.org http://www.openslam.org/toro.html

Drawbacks of TORO

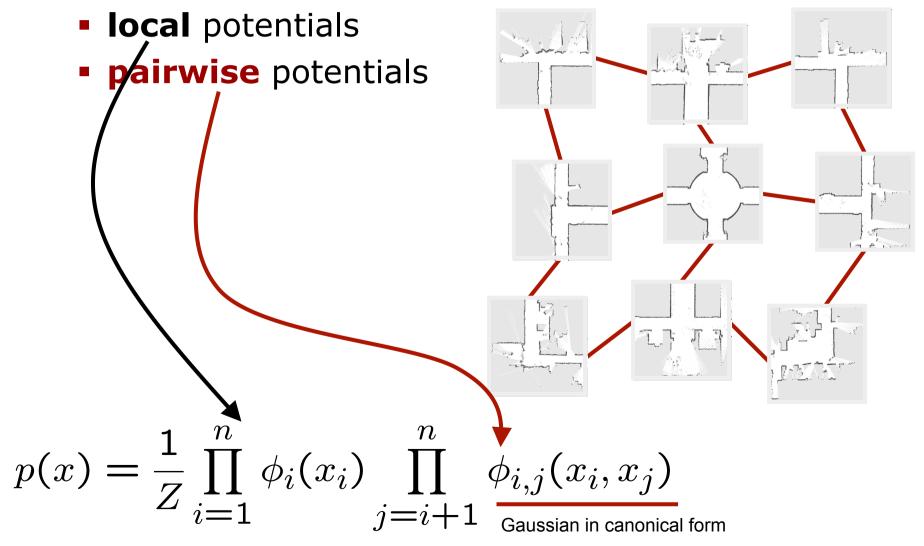
- The slerp-based update rule optimizes rotations and translations separately.
- It assume roughly spherical covariance ellipses.
- It is a maximum likelihood technique.
 No covariance estimates!
- Approach of Tipaldi et al. accurately estimates the covariances after convergence [Tipaldi et al., 2007]

Data Association

- TORO computes the mean of the distribution given the data associations
- To determine the data associations, we need the uncertainty about the nodes' poses
- Approaches to compute the uncertainties:
 - Matrix inversion
 - Loopy belief propagation
 - Belief propagation on a spanning tree
 - Loopy intersection propagation

Graphical SLAM as a GMRF

Factor the distribution

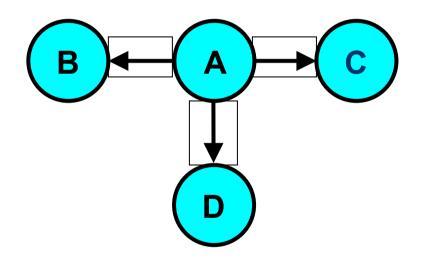


Belief Propagation

- Inference by local message passing
- Iterative process
 - Collect messages

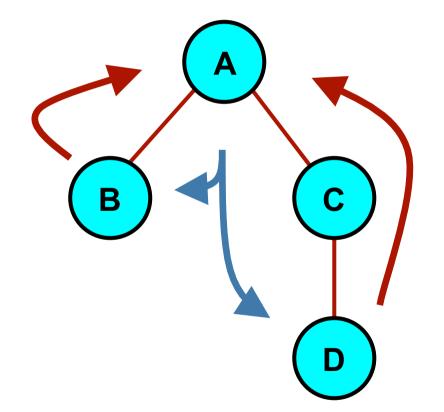
$$egin{array}{lll} \mathbf{m}_i^{(t)} &=& \eta_i + \sum_{j \in \mathcal{N}_i} \mathbf{m}_{ji}^{(t-1)} \ \mathbf{M}_i^{(t)} &=& \Omega_i + \sum_{j \in \mathcal{N}_i} \mathbf{M}_{ji}^{(t-1)} \end{array}$$

Send messages



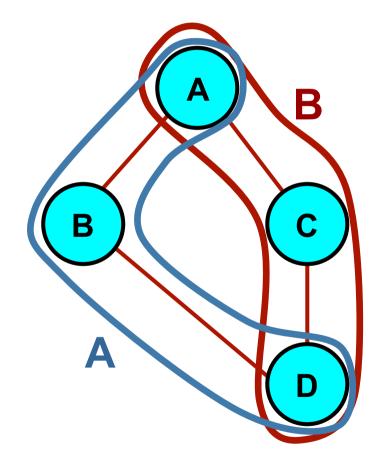
$$\mathbf{m}_{ij}^{(t)} = \eta_{ij}^{j} \ \Omega_{ij}^{[ji]} \left(\mathbf{\Omega}_{ij}^{[ii]} + \mathbf{M}_{i}^{(t)} - \mathbf{M}_{ji}^{(t-1)} \right)^{-1} \left(\eta_{ij}^{i} + \mathbf{m}_{i}^{(t)} - \mathbf{m}_{ji}^{(t-1)} \right)$$
$$\mathbf{M}_{ij}^{(t)} = \mathbf{\Omega}_{ij}^{[jj]} - \mathbf{\Omega}_{ij}^{[ji]} \left(\mathbf{Ignore\ the}^{[ii]} \mathbf{math}_{i}^{(t-1)} - \mathbf{\Omega}_{ij}^{[ij]} \right)^{-1} \mathbf{\Omega}_{ij}^{[ij]}$$

Belief Propagation - Trees



- Exact inference
- Message passing
- Two iterations
 - From leaves to root:
 variable elimination
 - From root to leaves:
 back substitution

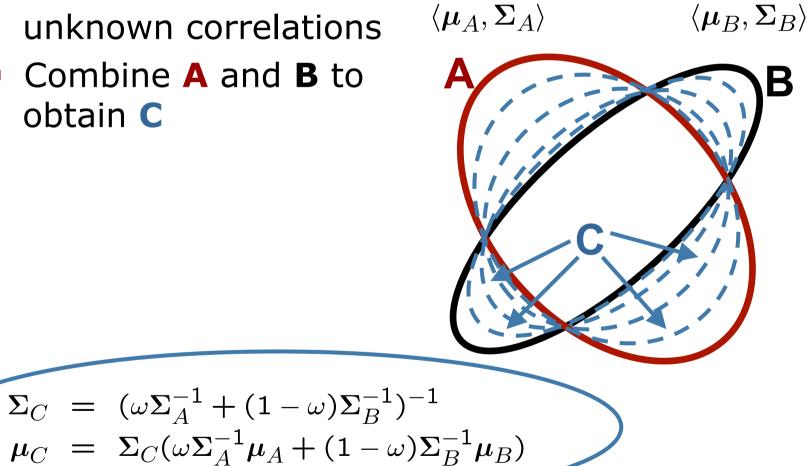
Belief Propagation - Loops



- Approximation
- Multiple paths
- Overconfidence
 - Correlations between path A and path B
- How to integrate information at **D**?

Covariance Intersection

- Fusion rule for unknown correlations
- Combine A and B to obtain C



Loopy Intersection Propagation

Key ideas

- Exact inference on a spanning tree computed via cutting matrices
- Augment the tree with information coming from loops within local potentials (priors)
- Apply belief propagation

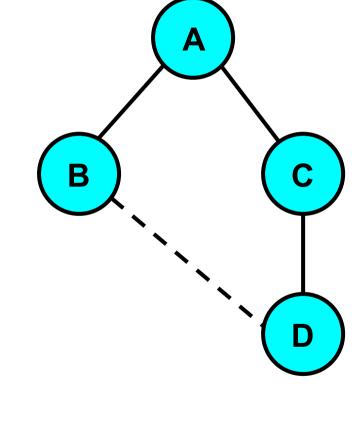
Approximation via Cutting Matrix

Removal as matrix subtraction

 $\hat{\Omega} = \Omega - K$

- Regular cutting matrix
- Cut all off-tree edges

$$\mathbf{K}_{BD} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Omega}_{BD}^{[BB]} & \mathbf{0} & \mathbf{\Omega}_{BD}^{[BD]} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Omega}_{BD}^{[DB]} & \mathbf{0} & \mathbf{\Omega}_{BD}^{[DD]} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$



Fusing Loops with Spanning Trees

B

Δ

C

Estimate A and B

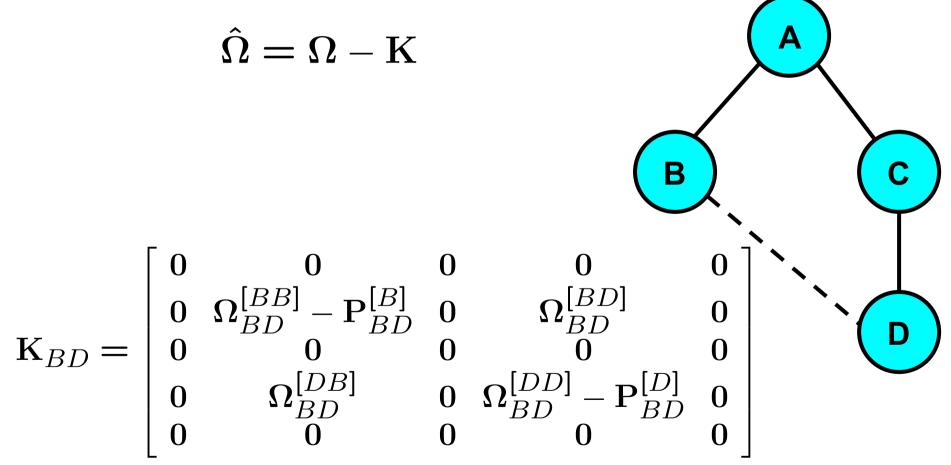
Fuse the estimates

$$\hat{\mathbf{M}}_{B} = \begin{array}{l} \omega_{B}\mathbf{M}_{B} + (1 - \omega_{B})\mathbf{E}_{BD}^{[B]} \\ \hat{\mathbf{M}}_{D} = \begin{array}{l} \mathbf{\hat{\mathbf{M}}}_{D} + (1 - \omega_{D})\mathbf{E}_{BD}^{[B]} \\ \omega_{D}\mathbf{M}_{D} + (1 - \omega_{D})\mathbf{E}_{BD}^{[B]} \end{array}$$

• Compute the priors $\mathbf{P}_{ij}^{[k]} = \hat{\mathbf{M}}_k - \mathbf{M}_k$

Remove Edge and Add Priors

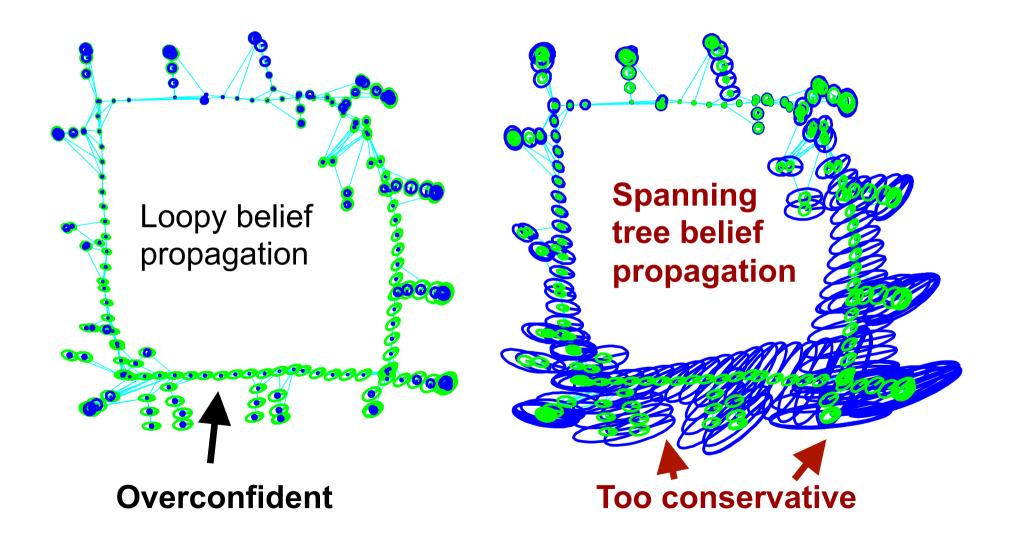
 Removal of the edge and adding priors realized as a matrix subtraction



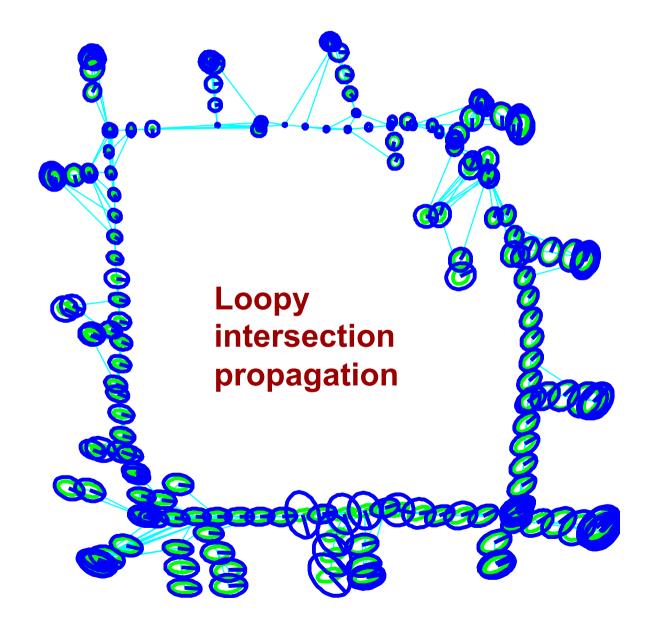
LIP – Algorithm

- 1. Compute a spanning tree
- 2. Run belief propagation on the tree
- 3. For every off-tree edge
 - 1. compute the off-tree estimates,
 - 2. compute the new priors, and
 - **3.** delete the edge
- 4. Re-run belief propagation

Results



Results



Conclusions

- TORO Efficient maximum likelihood algorithm for 2D and 3D graphs of poses
- No covariance estimates!
- Approach for recovering the covariance matrices via belief propagation and covariance intersection
 - Linear time complexity
 - Tight estimates
 - Generally conservative (not guaranteed!)