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SLAM

= Constraints connect the poses of the robot
while it is moving

= Constraints are inherently uncertain
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SLAM

= Observing previously seen areas generates
constraints between non-successive poses

= Constraints are inherently uncertain
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SCLAM - Adding Calibration

= Eliminate systematic errors
= Location of the sensor on the robot
= Systematic odometry errors

P> Robot pose Constraint --=» Constraint (corrected)



Relevance

= Systematic errors can strongly influence
the results of a mapping system



Key Idea

= Extend graph-based SLAM to estimate also
systematic errors

= Explicitly model that the measurements are
obtained in a different coordinate frame

= Estimate the forward kinematics parameters

= Allow for online optimization
(e.g., when the robot carries a load)
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Robotics I
Instantaneous Center of Curvature

S—

= For rolling motion to occur, each wheel has to
move along its y-axis



Robotics 1
Differential Drive
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Robotics I
Forward Kinematics

X'l [cos(wot) -sin(wot) 0] [x-ICCi] [ICC:]
sin(wot) cos(wot) 0] |y-ICCy |+ |[ICC,
0 0 1 0 WOt

P(t+0t)




Odometry Measurements

Forward kinematics for a differential drive robot:
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Sensor Measurements

The observations (5% allow to estimate the ego-
motion of the sensor and thus the motion of the
robot, given the position of the sensor on the robot.
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Graph Optimization

= Combine both types of measurements
= Find the minimum of the error function:

F(x,Lk) = ) e};(x) Q%ei(x) +
(i.,7)
Y el(x) ' Vel (x)



Graph Optimization (2)

= Without loss of generality: y := (x,k,1)'
= Find the minimum of the error function

SPD information matrix
)
y" = argmin 3 eg(Y)lek(T)
k

error function | | state vector

= Minimization by applying methods such as
Gauss-Newton or Levenberg-Marquardt



Iterative Solution (1)

= Linearize the error around the current solution y,
by fixing y and varying a small increment Ay

der(y @ Ay)
e (Yo®AY) = e+ Ay I, = ==X DAy

Ay=0

= The error term in the neighborhood of the
linearization becomes a quadratic form

en(yo ® Ay) = ef(yo® Ay)Qer(yo ® Ay)
~ ef Qpep+2ef QJp Ay + Ay’ JL Q) Ay
Ck béf H,

= ¢;+2b/ Ay + Ay'H,Ay




Iterative Solution (2)

= The same substitution can be applied to
the global error function

F(yo®Ay) ~ ), (Ck + b Ay + AYTHkAY)
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Iterative Solution (3)

= The optimum of the quadratic form can be
found by solving the linear system

HAy = -b
= or using the damped variant

(H4+X)Ay = —-b

= The improved estimate is obtained by
applying the perturbation to the previous
guess

Yo < yo & Ay”



How Does This Work in Practice?

= Three differential drive robots
= Equipped with laser range finders

PowerBot Pioneer 1



Effect of the Odometry Parameters

with online calibration
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Simulation
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= Simulate a robot carrying a load
= Sliding windows for the wheel radii



Online Odometry Calibration

= Robot carries a load
= Additional weight compresses the tires

= Since the load is variable, the best

performance can be obtained by estimating
the parameters online
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Position of the on-board sensor
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Ground truth: (0.3, 0.6, 30°)



Offline Experiments — Real world

Robot parameters

PowerBot

Custom

Pioneer

wheel radius [m]

0.125

0.16

0.065

wheel distance [m]

0.56

0.7

0.35

ticks per revolution

22835

20000

1970

laser offset [m, m, °]

(0.22, 0, 0)

(0.3, 0, 0)

(0.1, 0, 0)

laser scanner model

Sick LMS291

Sick LMS151

Hokuyo URG

Calibration results

laser offset
(m, m, °)

wheel radii
(m, m) m

distance

PowerBot - 1

(0.2258, 0.0026, 0.099)

(0.1263, 0.1275)

0.5825

PowerBot - 2

(0.2231, -0.0031, 0.077)

(0.1243, 0.1248)

0.6091

Custom -1

(0.3067, -0.0051, -0.357)

(0.1603, 0.1605)

0.6969

Custom - 2

(0.3023, -0.0087, -0.013)

(0.1584, 0.1575)

0.7109

Pioneer - 1

(0.1045, 0.009, -0.178)

(0.0656,

0.065) | 0.3519

Pioneer - 2

(0.1066, -0.0031, -0.28)

(0.0658, 0.0655)

0.3461




Influence of the Underground
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= Provides additional information about the
noise induced by the floor



Summary

= Additional Parameters can be estimated
during mapping

= Here: sensor offset and odometry
parameters

= Parameter estimation can be easily

integrated into the error minimization
framework



