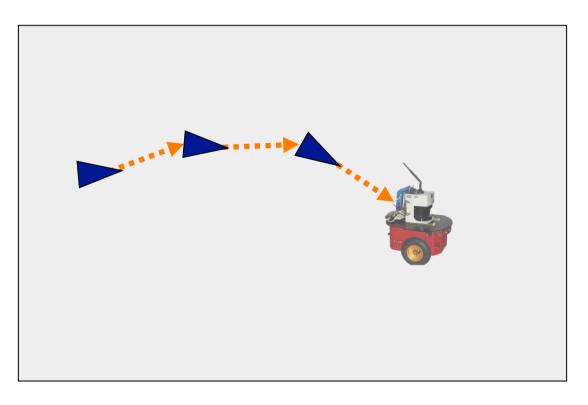
Advanced Techniques for Mobile Robotics

Simultaneous Calibration, Localization, and Mapping

Wolfram Burgard, Cyrill Stachniss,

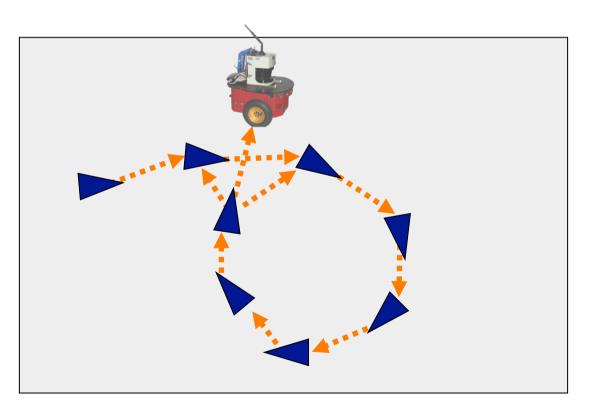
Kai Arras, Maren Bennewitz

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

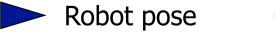


SLAM

- Observing previously seen areas generates constraints between non-successive poses
- Constraints are inherently uncertain

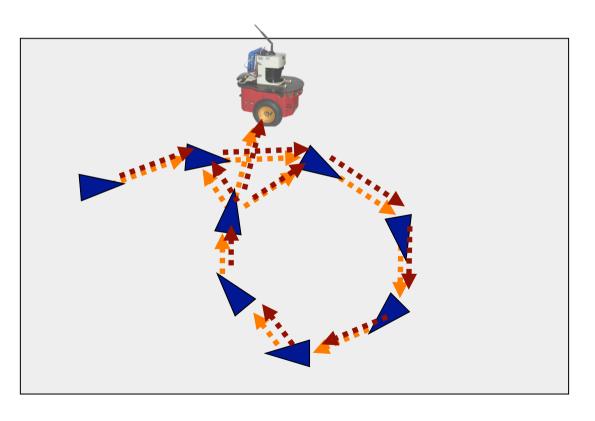


Constraint



SCLAM – Adding Calibration

- Eliminate systematic errors
 - Location of the sensor on the robot
 - Systematic odometry errors

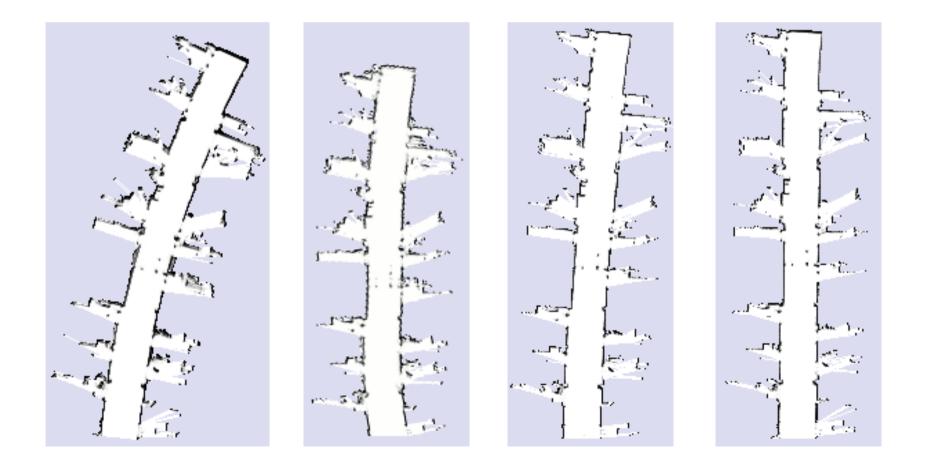


....

Constraint •••• Constraint (corrected)

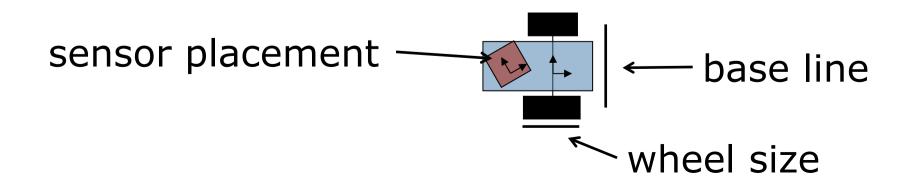
Relevance

 Systematic errors can strongly influence the results of a mapping system

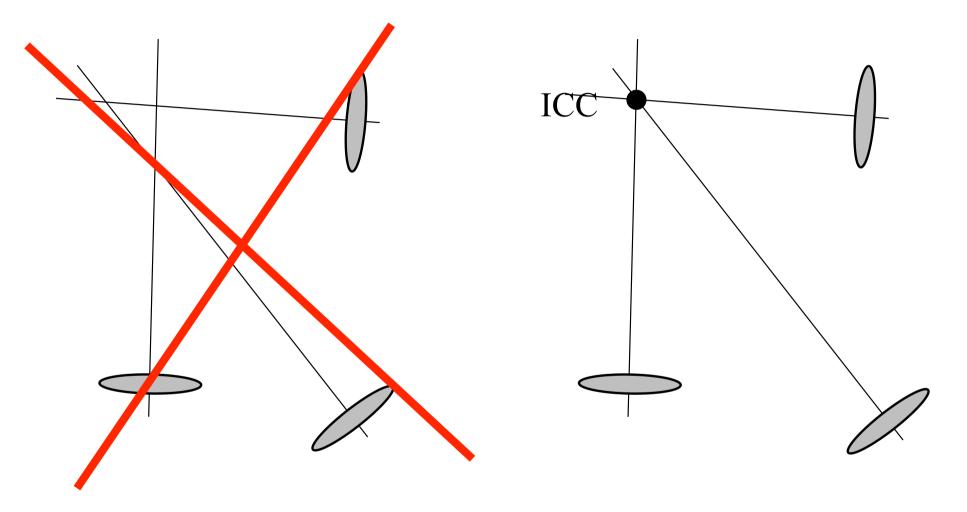


Key Idea

- Extend graph-based SLAM to estimate also systematic errors
- Explicitly model that the measurements are obtained in a different coordinate frame
- Estimate the forward kinematics parameters
- Allow for online optimization (e.g., when the robot carries a load)

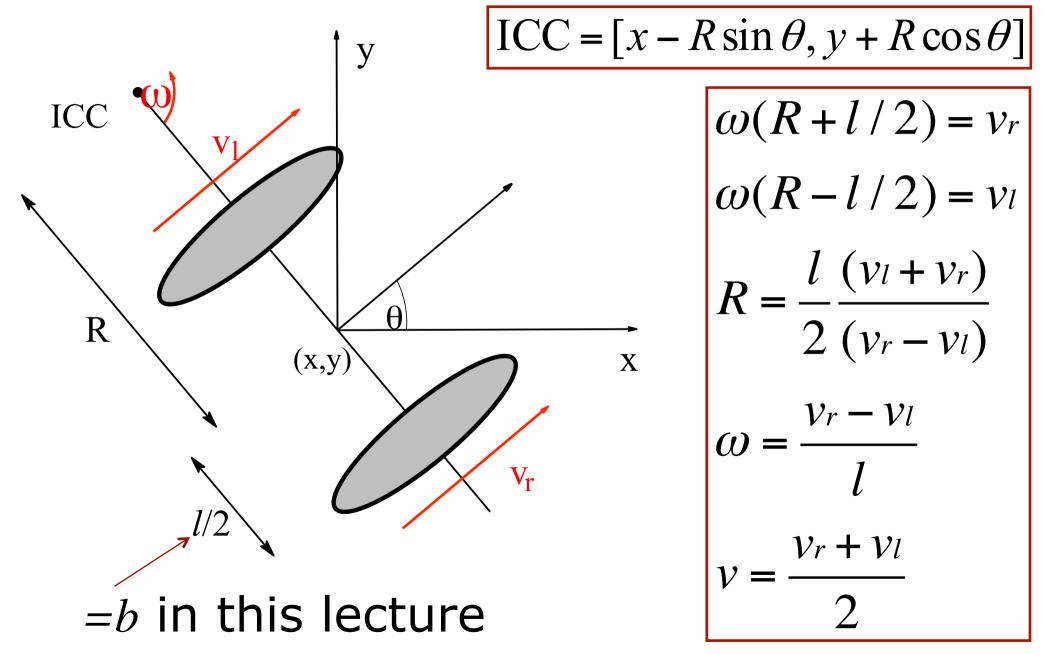


Robotics I Instantaneous Center of Curvature

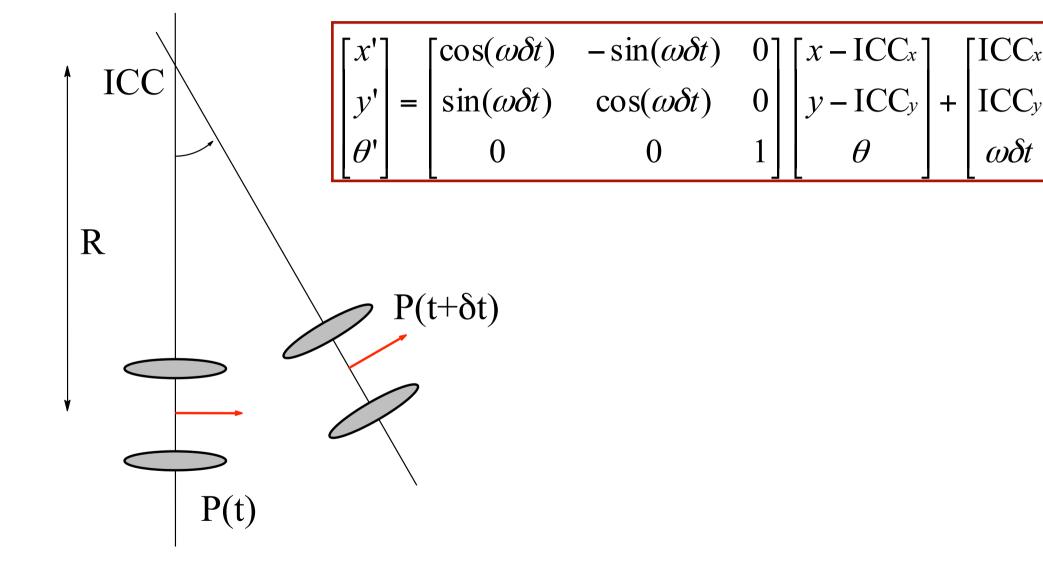


 For rolling motion to occur, each wheel has to move along its y-axis

Robotics I Differential Drive



Robotics I Forward Kinematics



ωδt

Odometry Measurements

Forward kinematics for a differential drive robot:

$$K(\mathbf{u}, \mathbf{k}) = \begin{pmatrix} R(\Delta t\omega) & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} -ICC \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} ICC \\ \Delta t\omega \end{pmatrix}$$

$$\mathbf{k} = \begin{pmatrix} r_l \\ r_r \\ b \end{pmatrix} \quad \mathbf{u} = \begin{pmatrix} v_l \\ v_r \end{pmatrix}$$

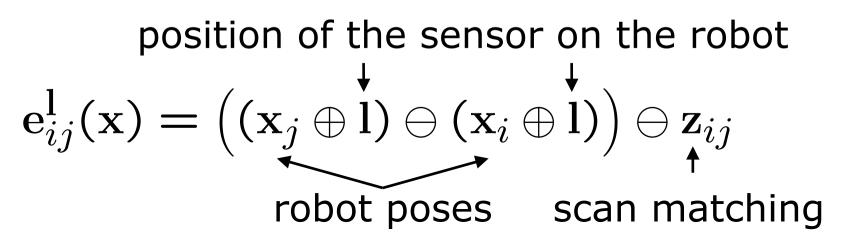
$$\omega = \frac{v_r r_r - v_l r_l}{b}$$

Error function:

Sensor Measurements

The observations (\bigstar) allow to estimate the egomotion of the sensor and thus the motion of the robot, **given** the position of the sensor on the robot.

Error function:



Graph Optimization

- Combine both types of measurements
- Find the minimum of the error function:

$$egin{array}{rll} \mathrm{F}(\mathrm{x},\mathrm{l},\mathrm{k}) &=& \displaystyle{\sum_{\langle i,j
angle}} \mathrm{e}_{ij}^{\mathrm{l}}(\mathrm{x})^{ op} \Omega_{ij}^{\mathrm{z}} \mathrm{e}_{ij}^{\mathrm{l}}(\mathrm{x}) + \ && \displaystyle{\sum_{i}} \mathrm{e}_{i}^{\mathrm{u}}(\mathrm{x})^{ op} \widetilde{\Omega}_{i}^{\mathrm{u}} \mathrm{e}_{i}^{\mathrm{u}}(\mathrm{x}) \end{array}$$

Graph Optimization (2)

- Without loss of generality: $\mathbf{y} := (\mathbf{x}, \mathbf{k}, \mathbf{l})^\top$
- Find the minimum of the error function

 Minimization by applying methods such as Gauss-Newton or Levenberg-Marquardt

Iterative Solution (1)

• Linearize the error around the current solution y_0 by fixing y and varying a small increment Δy

$$\mathbf{e}_k(\mathbf{y}_0 \oplus \Delta \mathbf{y}) = \mathbf{e}_k + \mathbf{J}_k \Delta \mathbf{y} \quad \mathbf{J}_k = \left. \frac{\partial \mathbf{e}_k(\mathbf{y} \oplus \Delta \mathbf{y})}{\partial \Delta \mathbf{y}} \right|_{\Delta \mathbf{y} = 0}$$

 The error term in the neighborhood of the linearization becomes a quadratic form

$$e_{k}(\mathbf{y}_{0} \oplus \Delta \mathbf{y}) = e_{k}^{T}(\mathbf{y}_{0} \oplus \Delta \mathbf{y})\Omega_{k}e_{k}(\mathbf{y}_{0} \oplus \Delta \mathbf{y})$$

$$\simeq \underbrace{e_{k}^{T}\Omega_{k}e_{k}}_{c_{k}} + 2\underbrace{e_{k}^{T}\Omega_{k}\mathbf{J}_{k}}_{\mathbf{b}_{k}^{T}}\Delta \mathbf{y} + \Delta \mathbf{y}^{T}\underbrace{\mathbf{J}_{k}^{T}\Omega_{k}\mathbf{J}_{k}}_{\mathbf{H}_{k}}\Delta \mathbf{y}$$

$$= c_{k} + 2\mathbf{b}_{k}^{T}\Delta \mathbf{y} + \Delta \mathbf{y}^{T}\mathbf{H}_{k}\Delta \mathbf{y}$$

Iterative Solution (2)

 The same substitution can be applied to the global error function

$$F(\mathbf{y}_{0} \oplus \Delta \mathbf{y}) \simeq \sum_{k} \left(c_{k} + \mathbf{b}_{k}^{T} \Delta \mathbf{y} + \Delta \mathbf{y}^{T} \mathbf{H}_{k} \Delta \mathbf{y} \right)$$
$$= \sum_{k} c_{k} + 2 \left(\sum_{k} \mathbf{b}_{k}^{T} \right) \Delta \mathbf{y} + \Delta \mathbf{y}^{T} \left(\sum_{k} \mathbf{H}_{k} \right) \Delta \mathbf{y}$$
$$= c + 2\mathbf{b}^{T} \Delta \mathbf{y} + \Delta \mathbf{y}^{T} \mathbf{H} \Delta \mathbf{y}$$

Iterative Solution (3)

 The optimum of the quadratic form can be found by solving the linear system

$$\mathrm{H}\Delta\mathrm{y}$$
 = $-\mathrm{b}$

or using the damped variant

$$(\mathbf{H} + \lambda \mathbf{I})\Delta \mathbf{y} = -\mathbf{b}$$

 The improved estimate is obtained by applying the perturbation to the previous guess

$$\mathbf{y}_0 \leftarrow \mathbf{y}_0 \oplus \mathbf{\Delta} \mathbf{y}^*$$

How Does This Work in Practice?

- Three differential drive robots
- Equipped with laser range finders

Custom

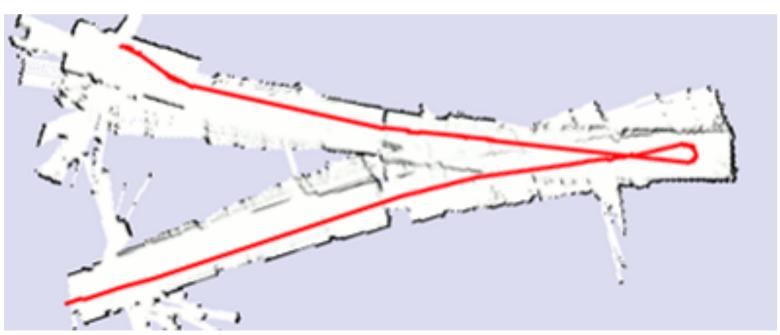
Pioneer I

Effect of the Odometry Parameters

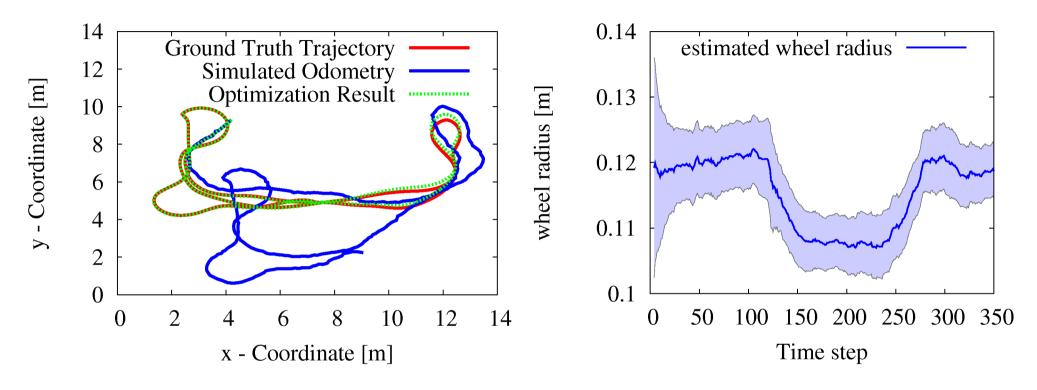
with online calibration



without online calibration



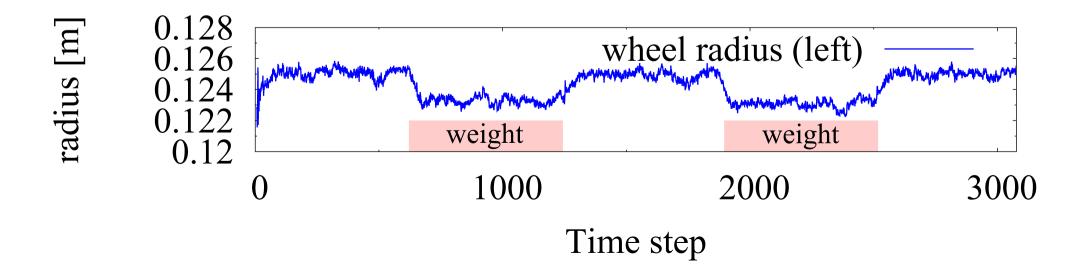
Simulation



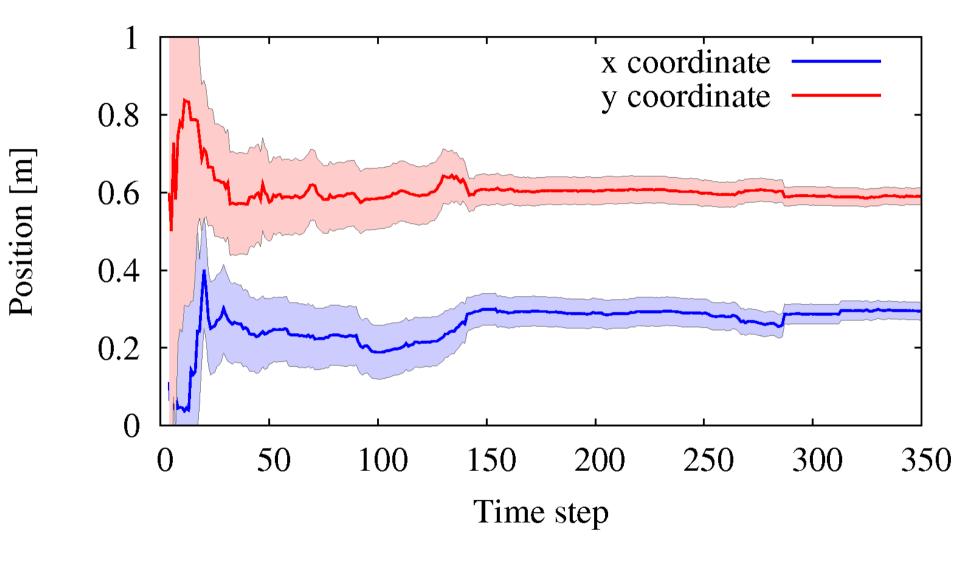
- Simulate a robot carrying a load
- Sliding windows for the wheel radii

Online Odometry Calibration

- Robot carries a load
- Additional weight compresses the tires
- Since the load is variable, the best performance can be obtained by estimating the parameters online



Position of the on-board sensor



Ground truth: (0.3, 0.6, 30°)

Offline Experiments – Real world

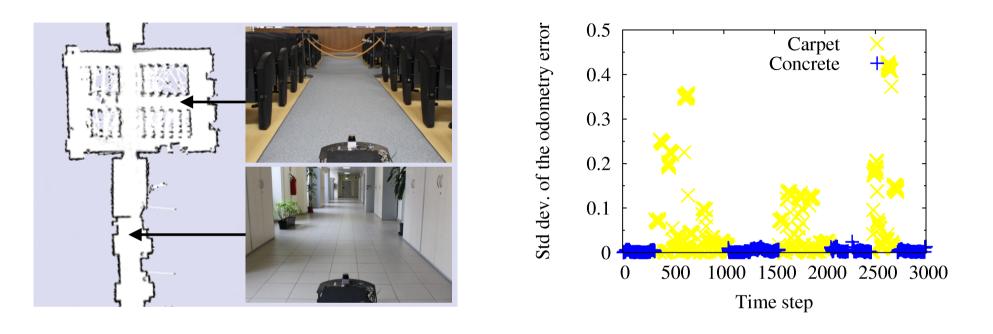
Robot parameters

•	PowerBot	Custom	Pioneer
wheel radius [m]	0.125	0.16	0.065
wheel distance [m]	0.56	0.7	0.35
ticks per revolution	22835	20000	1970
laser offset [m, m, °]	(0.22, 0, 0)	(0.3, 0, 0)	(0.1, 0, 0)
laser scanner model	Sick LMS291	Sick LMS151	Hokuyo URG

Calibration results

	laser offset	wheel radii	distance
	(m, m, °)	(m, m)	m
PowerBot - 1	(0.2258, 0.0026, 0.099)	(0.1263, 0.1275)	0.5825
PowerBot - 2	(0.2231, -0.0031, 0.077)	(0.1243, 0.1248)	0.6091
Custom - 1	(0.3067, -0.0051, -0.357)	(0.1603, 0.1605)	0.6969
Custom - 2	(0.3023, -0.0087, -0.013)	(0.1584, 0.1575)	0.7109
Pioneer - 1	(0.1045, 0.009, -0.178)	(0.0656, 0.065)	0.3519
Pioneer - 2	(0.1066, -0.0031, -0.28)	(0.0658, 0.0655)	0.3461

Influence of the Underground



 Provides additional information about the noise induced by the floor

Summary

- Additional Parameters can be estimated during mapping
- Here: sensor offset and odometry parameters
- Parameter estimation can be easily integrated into the error minimization framework