Advanced Techniques for Mobile Robotics

Graph-based SLAM with Landmarks

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

The Graph

So far:

- Vertices for robot poses (x, y, θ)
- Edges for virtual observations between robot poses $\mathbf{z}_{ij} = \langle (x, y, \theta)^T_{ij}, \Omega_{ij} \rangle$.

Topic today:

How to deal with landmarks

Landmark-Based SLAM

Real Landmark Map Example

[courtesy by E. Nebot]

The Graph with Landmarks

The Graph with Landmarks

- Nodes can represent:
 - Robot poses
 - Landmark locations
- Edges can represent:
 - Landmark observations
 - Odometry measurements
- The minimization optimizes the landmark locations and robot poses

2D Landmarks

- A landmark is a 2D point in the world (x,y)
- Relative observation

Landmarks Observation

Expected observation

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
Robot Landmark Robot translation

Landmarks Observation

Expected observation

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i)$$
Robot Landmark Robot translation

Error function

$$\begin{aligned} \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) &= \widehat{\mathbf{z}}_{ij} - \mathbf{z}_{ij} \\ &= \mathbf{R}_i^T(\mathbf{x}_j - \mathbf{t}_i) - \mathbf{z}_{ij} \end{aligned}$$

Bearing Only Observations

- A landmark is still a 2D point
- The robot observe only the bearing (orientation towards the landmark)
- Observation function

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan}_{\underbrace{(\mathbf{x}_j - \mathbf{t}_i).y}_{(\mathbf{x}_j - \mathbf{t}_i).x}}^{(\mathbf{x}_j - \mathbf{t}_i).y} - \theta_i$$
Robot Landmark Robot-landmark Robot orientation
angle

Bearing Only Observations

Observation function

$$\widehat{\mathbf{z}}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \operatorname{atan}_{\substack{(\mathbf{x}_j - \mathbf{t}_i).y \\ \uparrow} - \mathbf{t}_i}^{(\mathbf{x}_j - \mathbf{t}_i).x} - \theta_i$$
Robot Landmark Robot-landmark Robot orientation angle

Error function

$$\mathbf{e}_{ij}(\mathbf{x}_i,\mathbf{x}_j) = \operatorname{atan} \frac{(\mathbf{x}_j - \mathbf{t}_i).y}{(\mathbf{x}_j - \mathbf{t}_i).x} - \theta_i - \mathbf{z}_j$$

The Rank of the Matrix H

- What is the rank of the matrix H of a 2D landmark-pose constraint?
 - The blocks of the Jacobian are a 2x3 matrices
 - *H* cannot have more than rank 2 ($rank(A^TA) = rank(A^T) = rank(A)$)
- What is the rank of the matrix H for a bearing-only constraint?
 - The blocks of the Jacobian are a 1x3 matrices
 - H has rank=1

Where is the Robot?

- The robot observes one landmark (x-y)
- Where can the robot be?

The robot can be somewhere on a circle around the landmark

It is a 1D solution space (constraint on the distance and the robot's orientation)

Where is the Robot?

- The robot observes one landmark (bearing-only)
- Where can the robot be?

The robot can be anywhere in the x-y plane

It is a 2D solution space (constraint on the robot's orientation)

Rank

- In landmark-based SLAM, the system can be under-determined
- The rank of *H* is at most equal to the sum of the ranks of the constraints
- Looking at the rank:
 - How many 2D landmark observations are needed to resolve for a robot pose?
 - How many bearing-only observations are needed to resolve for a robot pose?
- To determine a unique solution, the system should have full rank

Under-determined Systems

- No guarantee for a system with full rank
 - Landmarks may be observed only once
 - The robot might have no odometry
- We can still deal with these situations by adding a "damping" factor to *H*.
 - Instead of solving $H \Delta x = -b$, we solve

 $(H + \lambda I) \Delta x = -b$

What is the effect of that?

$(H + \lambda I) \Delta x = -b$

- Damping factor for *H*
- ($H + \lambda I$) $\Delta x = -b$ instead of $H \Delta x = -b$
- The damping factor λ I makes the system positive definite
- It adds an additional constraints that "drag" the increments towards 0.
- What happens when $\lambda >> |H|$?

Simplified Levenberg Marquardt

 Damping to regulate the convergence using backup/restore actions

```
x: the initial guess
while (! converged)
     \lambda = \lambda_{ini+}
    <H,b> = buildLinearSystem(x);
    E = error(\mathbf{x})
    \mathbf{x}_{old} = \mathbf{x};
    \Delta x = solveSparse( (H + \lambda I) \Delta x = -b);
    \mathbf{x} + = \Delta \mathbf{x};
    If (E < error(\mathbf{x})) {
        \mathbf{x} = \mathbf{x}_{old};
        \lambda *= 2;
    } else { \lambda * / 2; }
```

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system

Fixing a Subset of Variables

- Assume that the value of certain variables during the optimization is known a priori
- We may want to optimize all others and keep these fixed
- How?
- If a variable is not optimized, it should "disappears" from the linear system
- Construct the full system
- Suppress the rows and the columns corresponding to the variables to fix

Uncertainty

- H represents the inverse covariance of the likelihood around the linearization point
- Inverting *H* gives the covariance matrix (which is dense)
- The diagonal blocks of the covariance matrix represent the (absolute) uncertainties of the corresponding variables

Relative Uncertainty

To determine the relative uncertainty between x_i and x_j :

- Construct the full matrix *H*
- Suppress the rows and the columns of x_i (fix it)
- Compute the *j*,*j* block of the inverse
- This block will contain the covariance matrix of x_j w.r.t. x_i, which has been fixed

Example

You Should have Learned...

- How to incorporate landmarks in the map
- How to embed prior knowledge about the position of some parts of the map
- How to determine the relative uncertainties