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The Graph 

So far: 
§  Vertices for robot poses (x,y,θ) 
§  Edges for virtual observations between 

robot poses zij = < (x,y,θ)T
ij, Ωij >. 

 
Topic today: 
§  How to deal with landmarks 



Landmark-Based SLAM 



Real Landmark Map Example 

[courtesy by E. Nebot] 



The Graph with Landmarks 
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The Graph with Landmarks 

§  Nodes can represent: 
§ Robot poses 
§ Landmark locations 

§  Edges can represent: 
§ Landmark observations  
§ Odometry measurements 

§  The minimization 
optimizes the landmark 
locations and robot poses  
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2D Landmarks 

§  A landmark is a 2D point in the world (x,y) 
§  Relative observation 
 

 

§  Error Function 
 



Landmarks Observation 

§  Expected observation 

 

Robot Landmark Robot translation 



Landmarks Observation 

§  Expected observation 

§  Error function 
 

Robot Landmark Robot translation 



Bearing Only Observations 

§  A landmark is still a 2D point 
§  The robot observe only the bearing 

(orientation towards the landmark) 
§  Observation function 

 
Robot Landmark Robot orientation Robot-landmark 

angle 



Bearing Only Observations 

§  Observation function 

§  Error function 

Robot Landmark Robot orientation Robot-landmark 
angle 



The Rank of the Matrix H 

§  What is the rank of the matrix H of a 2D 
landmark-pose constraint? 
§  The blocks of the Jacobian are a 2x3 matrices 
§  H cannot have more than rank 2 

(                                           ) 

§  What is the rank of the matrix H for a 
bearing-only constraint? 
§  The blocks of the Jacobian are a 1x3 matrices 
§  H has rank=1 



Where is the Robot? 

§  The robot observes one landmark (x-y) 
§  Where can the robot be? 

The robot can be somewhere on 
a circle around the landmark 

It is a 1D solution space 
(constraint on the distance  
and the robot’s orientation) 



Where is the Robot? 

§  The robot observes one landmark 
(bearing-only) 

§  Where can the robot be? 

The robot can be anywhere 
in the x-y plane 

It is a 2D solution space 
(constraint on the robot’s 
orientation) 



Rank 

§  In landmark-based SLAM, the system can 
be under-determined 

§  The rank of H is at most equal to the sum 
of the ranks of the constraints 

§  Looking at the rank: 
§  How many 2D landmark observations are 

needed to resolve for a robot pose? 
§  How many bearing-only observations are 

needed to resolve for a robot pose? 
§  To determine a unique solution, the 

system should have full rank 



Under-determined Systems 

§  No guarantee for a system with full rank 
§  Landmarks may be observed only once 
§  The robot might have no odometry 

§  We can still deal with these situations by 
adding a “damping” factor to H. 
§  Instead of solving H Δx = -b, we solve 
   (H  + λ I) Δx = -b 

 
       What is the effect of that? 



(H  + λ I) Δx = -b 

§  Damping factor for H 
§  (H  + λ I) Δx = -b  instead of H Δx = -b 
§  The damping factor λ I makes the system 

positive definite 
§  It adds an additional constraints that 

“drag” the increments towards 0. 
§  What happens when λ >> |H| ? 



Simplified Levenberg Marquardt  

§  Damping to regulate the convergence 
using backup/restore actions 
x: the initial guess 
while (! converged) 

 λ = λinit 
<H,b> = buildLinearSystem(x); 
E = error(x) 
xold = x; 
Δx  = solveSparse( (H + λ I) Δx = -b); 
x += Δx; 
If (E < error(x)){ 

x  = xold; 
λ *= 2; 

} else { λ */ 2; } 



Fixing a Subset of Variables 

§  Assume that the value of certain variables 
during the optimization is known a priori 

§  We may want to optimize all others and 
keep these fixed 

§  How? 
§  If a variable is not optimized, it simply 

“disappears” from the linear system 
§  Construct the full system 
§  Suppress the rows and the columns 

corresponding to the variables to fix 
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Fixing a Subset of Variables 

§  Assume that the value of certain variables 
during the optimization is known a priori 

§  We may want to optimize all others and 
keep these fixed 

§  How? 
§  If a variable is not optimized, it should 

“disappears” from the linear system 
§  Construct the full system 
§  Suppress the rows and the columns 

corresponding to the variables to fix 



Uncertainty 

§  H represents the inverse covariance of the 
likelihood around the linearization point 

§  Inverting H gives the covariance matrix 
(which is dense) 

§  The diagonal blocks of the covariance 
matrix represent the (absolute) 
uncertainties of the corresponding 
variables 



Relative Uncertainty 

To determine the relative uncertainty 
between xi and xj: 
§  Construct the full matrix H 
§  Suppress the rows and the columns of xi 

(fix it) 
§  Compute the j,j block of the inverse 
§  This block will contain the covariance 

matrix of xj w.r.t. xi, which has been fixed 



Example 

robot 



You Should have Learned… 

§  How to incorporate landmarks in the map 
§  How to embed prior knowledge about the 

position of some parts of the map 
§  How to determine the relative 

uncertainties 


