Advanced Techniques
for Mobile Robotics

Graph-based SLAM with
Landmarks

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI
I

FREIBURG

The Graph

So far:

= Vertices for robot poses (x,y,6)

= Edges for virtual observations between
robot poses z; = < (x,y,0)";, Q; >.

Topic today:

= How to deal with landmarks

Landmark-Based SLAM

Features and Landmarks

Vehicle-Feature Relative
Observation

.‘-‘:*...F -
e e
SRR
=TT Al
» ‘*:.. A—:.Q-'. -
o ir_’.::"’ e

Mobile Vehicle

Global Reference Frame

Real Landmark Map Example

(.. i J"

[courtesy by E. Nebot]

The Graph with Landmarks

\4
) X Feature

‘ﬁ -< " B> pose

===p Constraint

The Graph with Landmarks

= Nodes can represent: *
= Robot poses A
» Landmark locations x

= Edges can represent: g ’

= Landmark observations
= Odometry measurements

= The minimization * Feature
optimizes the landmark B> pose
locations and robot poses Constraint

2D Landmarks

= A landmark is a 2D point in the world (x,y)
= Relative observation

Features and Landmarks /”_——\:

Vehicle-Feature Relative
Observation

Mobile Vehicle

N Global Reference Frame

Landmarks Observation

= Expected observation

Zi i (3{%

T

Robot

Landmark

Xj) = R;-T(Xj—%z')

Robot translation

Landmarks Observation

= Expected observation

’Z\ij(ffi,?%j) = R;;T(Xj_%i)

Robot | | Landmark Robot translation

= Error function

2%3 — Zij
T
R; (x; — t;) — 2

e;i (X, X;)

Bearing Only Observations

= A landmark is still a 2D point

= The robot observe only the bearing
(orientation towards the landmark)

= Observation function

_ . (xj—t;).y
Pt T T
Robot | | Landmark Robot-landmark | | Robot orientation

angle

Bearing Only Observations

= Observation function

Z;i(X;,X;) =

1

T

Robot

Landmark

= Error function

e;i(X;,X;) =

atan i)y

(Xj—tz-).ac

T

0;
1

Robot-landmark
angle

Jtan (x;—t;).y

Robot orientation

(Xj—tz').a}

Qi—Zj

The Rank of the Matrix H

= What is the rank of the matrix H of a 2D
landmark-pose constraint?

= The blocks of the Jacobian are a 2x3 matrices

= H cannot have more than rank 2
(rank(ATA) = rank(A?) = rank(A))

= What is the rank of the matrix H for a
bearing-only constraint?
= The blocks of the Jacobian are a 1x3 matrices
= H has rank=1

Where is the Robot?

= The robot observes one landmark (x-y)
= Where can the robot be?

The robot can be somewhere on
a circle around the landmark

It is a 1D solution space
(constraint on the distance
and the robot’s orientation)

Where is the Robot?

= The robot observes one landmark
(bearing-only)

= Where can the robot be?

The robot can be anywhere
° in the x-y plane

O It is a 2D solution space
(constraint on the robot’s
orientation)

Rank

= In landmark-based SLAM, the system can
be under-determined

= The rank of H is at most equal to the sum
of the ranks of the constraints

= Looking at the rank:

= How many 2D landmark observations are
needed to resolve for a robot pose?

= How many bearing-only observations are
needed to resolve for a robot pose?

= To determine a unique solution, the
system should have full rank

Under-determined Systems

= No guarantee for a system with full rank
= Landmarks may be observed only once
= The robot might have no odometry

= We can still deal with these situations by
adding a “"damping” factor to H.

= Instead of solving H Ax = -b, we solve
(H + A1) Ax =-b

What is the effect of that?

(H + AI) Ax = -b

Damping factor for H
(H + AI) Ax = -b instead of H Ax = -b

The damping factor A I makes the system
positive definite

It adds an additional constraints that
“drag” the increments towards O.

What happens when A >> |H| ?

Simplified Levenberg Marquardt

= Damping to regulate the convergence
using backup/restore actions

X: the 1nitial guess
while (! converged)
A= Ainse
<H,b> = buildLinearSystem (X);
FF = error (x)
Xola — Xy
Ax = solveSparse((H + A I) Ax = -b);
X += Ax;
If (E < error(x)) {
X 7 Xog/
A *= 2;
} else { A */ 2;)}

Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
“disappears” from the linear system

Fixing a Subset of Variables

= Assume that the value of certain variables
during the optimization is known a priori

= We may want to optimize all others and
keep these fixed

= How?

= If a variable is not optimized, it should
“disappears” from the linear system

= Construct the full system

= Suppress the rows and the columns
corresponding to the variables to fix

Uncertainty

= H represents the inverse covariance of the
likelihood around the linearization point

= Inverting H gives the covariance matrix
(which is dense)

= The diagonal blocks of the covariance
matrix represent the (absolute)
uncertainties of the corresponding
variables

Relative Uncertainty

To determine the relative uncertainty
between x; and x;:

= Construct the full matrix H

= Suppress the rows and the columns of x;
(fix it)

= Compute the j,j block of the inverse

= This block will contain the covariance
matrix of x; w.r.t. x;, which has been fixed

robot

You Should have Learned...

= How to incorporate landmarks in the map

= How to embed prior knowledge about the
position of some parts of the map

= How to determine the relative
uncertainties

