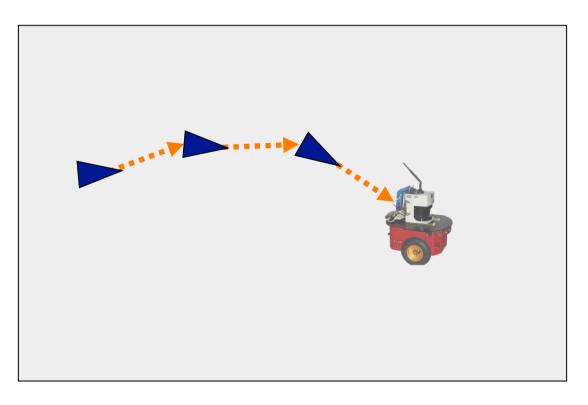
Advanced Techniques for Mobile Robotics

Graph-based SLAM using Least Squares

Wolfram Burgard, Cyrill Stachniss,

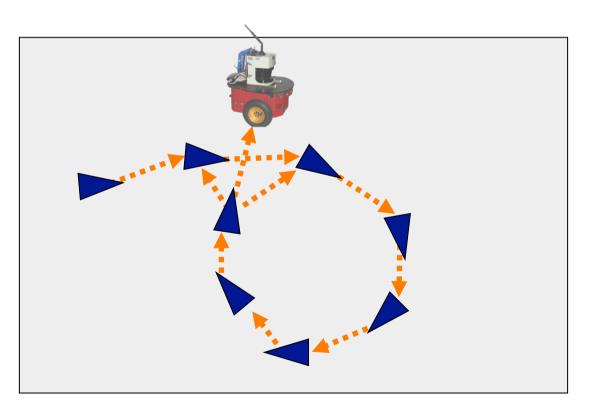
Kai Arras, Maren Bennewitz

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

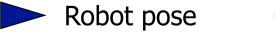


SLAM

- Observing previously seen areas generates constraints between non-successive poses
- Constraints are inherently uncertain



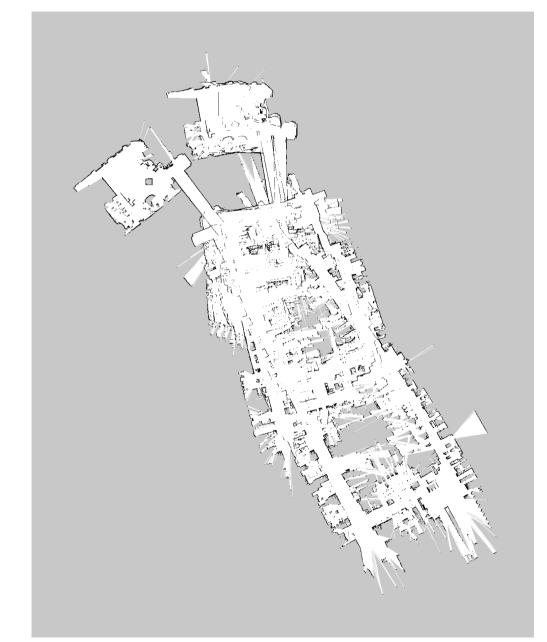
Constraint



Idea of Graph-Based SLAM

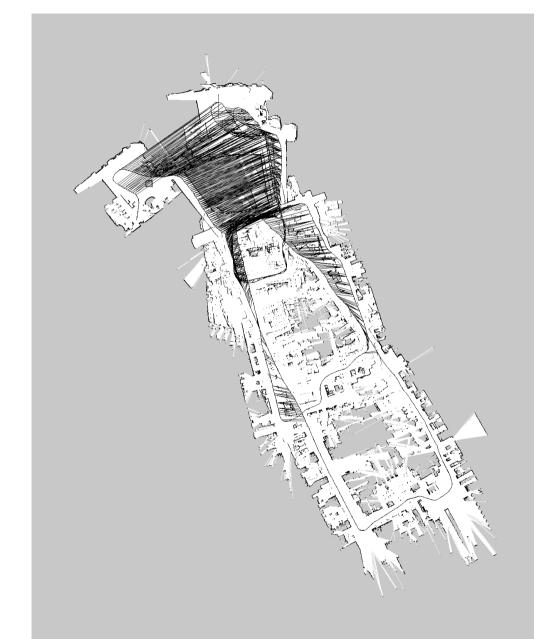
- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



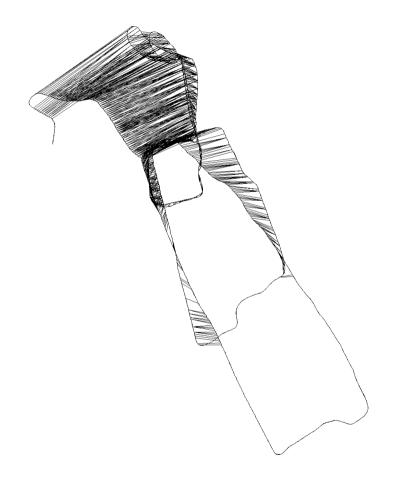
KUKA Halle 22, courtesy of P. Pfaff

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes

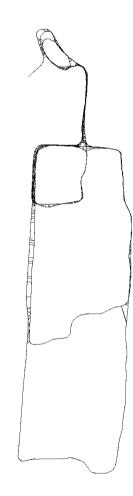


KUKA Halle 22, courtesy of P. Pfaff

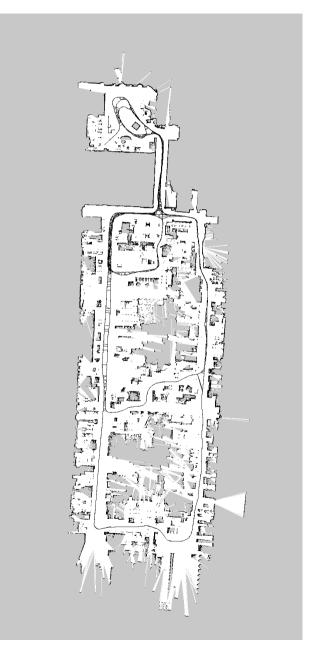
 Once we have the graph, we determine the most likely map by "moving" the nodes



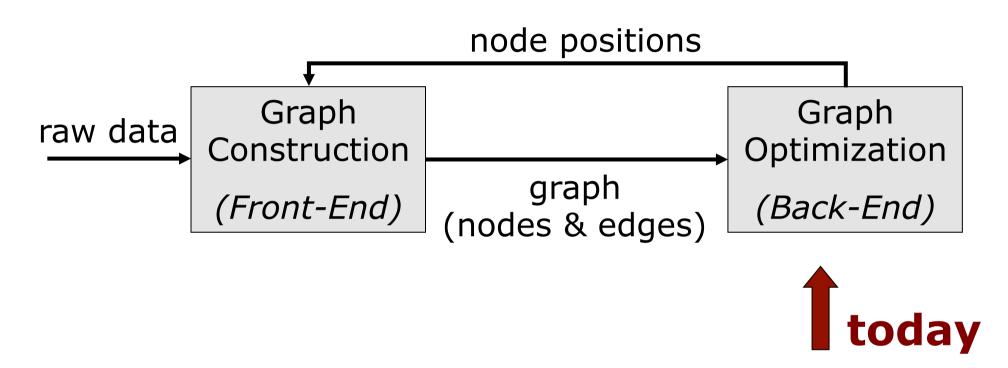
- Once we have the graph, we determine the most likely map by "moving" the nodes
- Iike this



- Once we have the graph, we determine the most likely map by "moving" the nodes
- Iike this
- Then, we can render a map based on the known poses



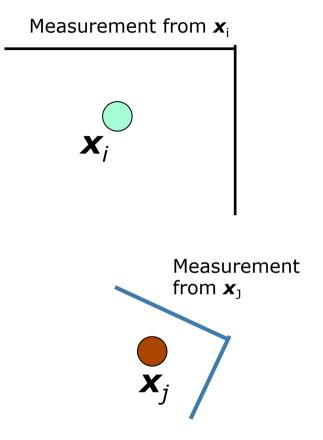
The Overall SLAM System



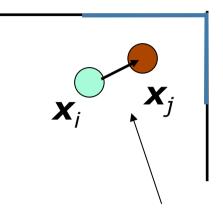
- Interleaving process of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space
- This lecture focuses only on the optimization part

- It consists of *n* nodes *x*=*x*_{1:n}
- Each node x_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint e_{ij} exists between the nodes x_i and x_i if
 - the robot observed the same part of the environment from *x_i* and *x_j* and constructs a "virtual measurement" about the position of *x_j* seen from or
 - an odometry measurement connects both poses.

- It consists of *n* nodes *x*=*x*_{1:n}
- Each node x_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint e_{ij} exists between the nodes x_i and x_i if
 - the robot observed the same part of the environment from *x_i* and *x_j* and constructs a "virtual measurement" about the position of *x_j* seen from or
 - an odometry measurement connects both poses.

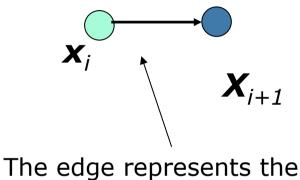


- It consists of *n* nodes *x*=*x*_{1:n}
- Each node x_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint e_{ij} exists between the nodes x_i and x_i if
 - the robot observed the same part of the environment from *x_i* and *x_j* and constructs a "virtual measurement" about the position of *x_j* seen from or
 - an odometry measurement connects both poses.



The edge represents the position of \mathbf{x}_j seen from \mathbf{x}_i , based on the **observations**

- It consists of *n* nodes *x*=*x*_{1:n}
- Each node x_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint e_{ij} exists between the nodes x_i and x_i if
 - the robot observed the same part of the environment from *x_i* and *x_j* and constructs a "virtual measurement" about the position of *x_j* seen from or
 - an odometry measurement connects both poses.



odometry measurement

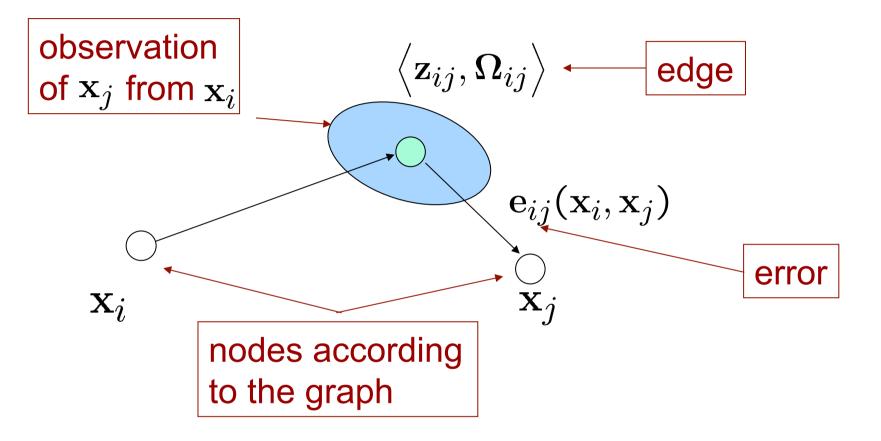
The Edge Information Matrices

- Observations are affected by noise
- We use an information matrix Ω_{ij} for each edge to encode the uncertainty of the edge
- The "bigger" Ω_{ij} , the more the edge "matters" in the optimization procedure

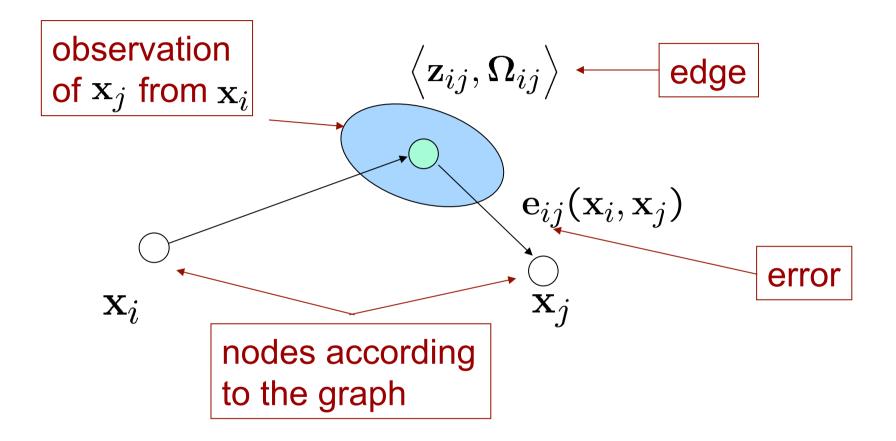
Questions:

- What do the information matrices look like in case of scan-matching vs. odometry?
- What should these matrices look like in a long, featureless corridor?

Pose Graph



Pose Graph



• Goal:
$$\widehat{\mathbf{x}} = \operatorname*{argmin}_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{e}_{ij}$$

SLAM as a Least Squares Problem

The error function looks suitable for least squares error minimization

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^{T}(\mathbf{x}_{i}, \mathbf{x}_{j}) \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \Omega_{k} \mathbf{e}_{k}(\mathbf{x})$$

SLAM as a Least Squares Problem

The error function looks suitable for least squares error minimization

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^{T}(\mathbf{x}_{i}, \mathbf{x}_{j}) \Omega_{ij} \mathbf{e}_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \Omega_{k} \mathbf{e}_{k}(\mathbf{x})$$

Questions:

What is the state vector?

Specify the error function!

SLAM as a Least Squares Problem

The error function looks suitable for least squares error minimization

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} \sum_{ij} \mathbf{e}_{ij}^{T}(\mathbf{x}_{i}, \mathbf{x}_{j}) \boldsymbol{\Omega}_{ij} \mathbf{e}_{ij}(\mathbf{x}_{i}, \mathbf{x}_{j})$$
$$= \operatorname{argmin}_{\mathbf{x}} \sum_{k} \mathbf{e}_{k}^{T}(\mathbf{x}) \boldsymbol{\Omega}_{k} \mathbf{e}_{k}(\mathbf{x})$$

Questions:

What is the state vector?

One block for each node of the graph

$$\mathbf{x}^T = \begin{pmatrix} \mathbf{x}_1^T & \mathbf{x}_2^T & \cdots & \mathbf{x}_n^T \end{pmatrix}$$

Specify the error function!

The Error Function

The generic error function of a constraint characterized by a mean *z_{ij}* and an information matrix Ω_{ij} is a vector of the same size as *x_i*

$$\mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

measurement **x**_i in the reference of **x**_i

The error as a function of all the state x:

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathsf{t2v}(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1}\mathbf{X}_j))$$

The error function is 0 when

$$\mathbf{Z}_{ij} = (\mathbf{X}_i^{-1}\mathbf{X}_j)$$

The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$$\mathbf{e}_{ij}(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{e}_{ij}(\mathbf{x}) + \mathbf{J}_{ij}\Delta \mathbf{x}$$

 $\mathbf{J}_{ij} = \frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}}$

Derivative of the Error Function

Does one error function e_{ij}(x) depend on all state variables?

Derivative of the Error Function

- Does one error function e_{ij}(x) depend on all state variables?
 - No, only on x_i and x_j
- Is there any consequence on the structure of the Jacobian?

Derivative of the Error Function

- Does one error function e_{ij}(x) depend on all state variables?
 - No, only on x_i and x_j
- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_j!

$$\frac{\partial \mathbf{e}_{ij}(\mathbf{x})}{\partial \mathbf{x}} = \left(\begin{array}{c} \mathbf{0} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \cdots \frac{\partial \mathbf{e}_{ij}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \cdots \mathbf{0} \end{array} \right)$$
$$\mathbf{J}_{ij} = \left(\begin{array}{c} \mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \end{array} \right)$$

Jacobians and Sparsity

 The error function *e*_{ij} of one constraint depends only on the two parameter blocks *x*_i and *x*_j

$$\mathbf{e}_{ij}(\mathbf{x}) = \mathbf{e}_{ij}(\mathbf{x}_i, \mathbf{x}_j)$$

 Thus, the Jacobian will be 0 everywhere but in the columns of *x_i* and *x_j*.

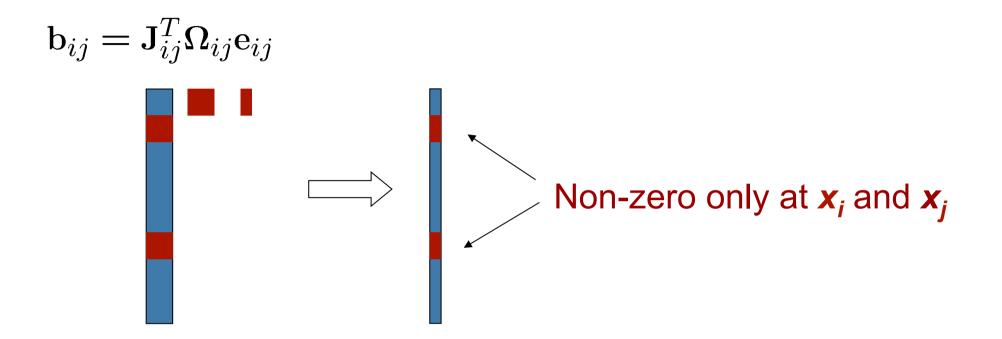
$$\mathbf{J}_{ij} = \left(\mathbf{0} \cdots \mathbf{0} \left| \begin{array}{c} \frac{\partial \mathbf{e}(\mathbf{x}_i)}{\partial \mathbf{x}_i} \\ \frac{\partial \mathbf{x}_i}{\mathbf{A}_{ij}} \end{array} \mathbf{0} \cdots \mathbf{0} \left| \begin{array}{c} \frac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \\ \frac{\partial \mathbf{e}(\mathbf{x}_j)}{\partial \mathbf{x}_j} \\ \frac{\partial \mathbf{e}(\mathbf{x}_j)}{\mathbf{B}_{ij}} \end{array} \mathbf{0} \cdots \mathbf{0} \right| \right)$$

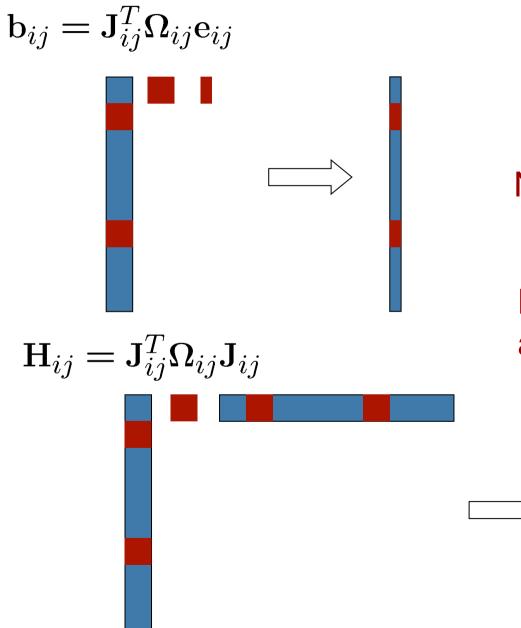
Consequences of the Sparsity

 To apply least squares, we need to compute the coefficient vectors and the coefficient matrices:

$$\mathbf{b}^{T} = \sum_{ij} \mathbf{b}_{ij}^{T} = \sum_{ij} \mathbf{e}_{ij}^{T} \mathbf{\Omega}_{ij} \mathbf{J}_{ij}$$
$$\mathbf{H} = \sum_{ij} \mathbf{H}_{ij} = \sum_{ij} \mathbf{J}_{ij}^{T} \mathbf{\Omega} \mathbf{J}_{ij}$$

- The sparse structure of J_{ij} will result in a sparse structure of H
- This structure reflects the adjacency matrix of the graph





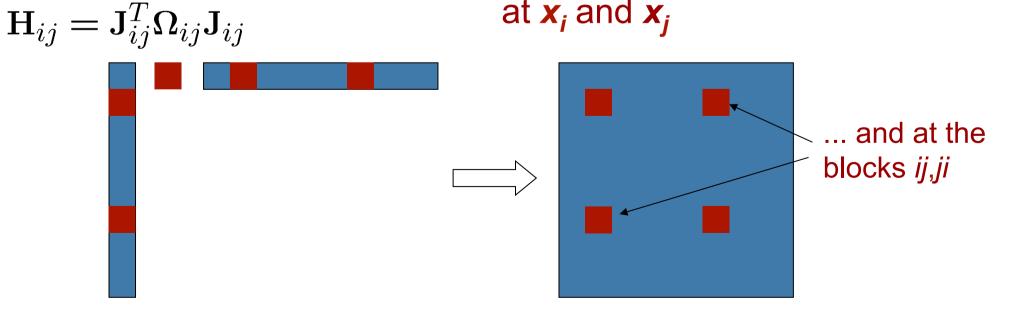
Non-zero only at x_i and x_j

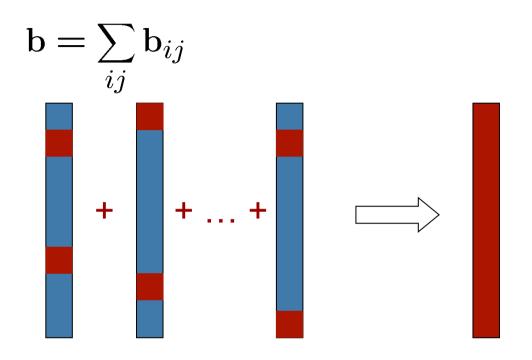
Non-zero on the main diagonal at \mathbf{x}_i and \mathbf{x}_j

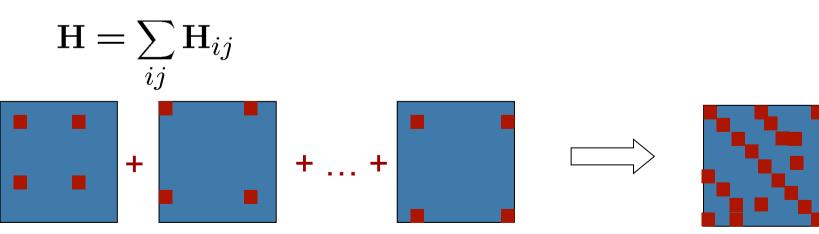
$$\mathbf{b}_{ij} = \mathbf{J}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{e}_{ij}$$

Non-zero only at x_i and x_j

Non-zero on the main diagonal at x_i and x_j







Consequences of the Sparsity

- An edge of the graph contributes to the linear system via its coefficient vector b_{ij} and its coefficient matrix H_{ij}.
- The coefficient vector is:

$$\mathbf{b}_{ij}^{T} = \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij}$$

$$= \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \left(\mathbf{0} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

$$= \left(\mathbf{0} \cdots \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} \cdots \mathbf{e}_{ij}^{T} \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \cdots \mathbf{0} \right)$$

 It is non-zero only at the indices corresponding to x_i and x_j

Consequences of the Sparsity

The coefficient matrix of an edge is:

$$\begin{split} \mathbf{H}_{ij} &= \mathbf{J}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{J}_{ij} \\ &= \begin{pmatrix} \vdots \\ \mathbf{A}_{ij}^T \\ \vdots \\ \mathbf{B}_{ij}^T \\ \vdots \end{pmatrix} \boldsymbol{\Omega}_{ij} \begin{pmatrix} \cdots \mathbf{A}_{ij} \cdots \mathbf{B}_{ij} \cdots \end{pmatrix} \\ &= \begin{pmatrix} \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{A}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \\ &\mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{A}_{ij} & \mathbf{B}_{ij}^T \boldsymbol{\Omega}_{ij} \mathbf{B}_{ij} \end{pmatrix} \end{split}$$

Is non zero only in the blocks *i,j*.

Sparsity Summary

- An edge between x_i and x_j in the graph contributes only to the
 - *i*th and the *j*th blocks of the coefficient vector,
 - blocks *ii, jj, ij* and *ji* of the coefficient matrix.
- The resulting system is sparse and can be computed by iteratively "accumulating" the contribution of each edge
- Efficient solvers can be used
 - Sparse Cholesky decomposition (with COLAMD)
 - Conjugate Gradients
 - ... many others

The Linear System

Vector of the states increments:

$$\mathbf{\Delta \mathbf{x}^{T}} = \left(\mathbf{\Delta \mathbf{x}_{1}^{T}} \ \mathbf{\Delta \mathbf{x}_{2}^{T}} \ \cdots \ \mathbf{\Delta \mathbf{x}_{n}^{T}}
ight)$$

Coefficient vector:

$$\mathbf{b}^T = \begin{pmatrix} \bar{\mathbf{b}}_1^T & \bar{\mathbf{b}}_2^T & \cdots & \bar{\mathbf{b}}_n^T \end{pmatrix}$$

System Matrix:

$$\mathbf{H} = \begin{pmatrix} \bar{\mathbf{H}}^{11} & \bar{\mathbf{H}}^{12} & \cdots & \bar{\mathbf{H}}^{1n} \\ \bar{\mathbf{H}}^{21} & \bar{\mathbf{H}}^{22} & \cdots & \bar{\mathbf{H}}^{2n} \\ \vdots & \ddots & \vdots \\ \bar{\mathbf{H}}^{n1} & \bar{\mathbf{H}}^{n2} & \cdots & \bar{\mathbf{H}}^{nn} \end{pmatrix}$$

The linear system is a block system with *n* blocks, one for each node of the graph.

Building the Linear System

- x is the current linearization point
- Initialization b = 0 H = 0
- For each constraint:
 - Compute the error $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$ Compute the blocks of the Jacobian:

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i} \qquad \mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$$

Update the coefficient vector:

$$\bar{\mathbf{b}}_i^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{b}}_j^T + = \mathbf{e}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Update the system matrix:

$$\bar{\mathbf{H}}^{ii} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{ij} + = \mathbf{A}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$
$$\bar{\mathbf{H}}^{ji} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{A}_{ij} \qquad \bar{\mathbf{H}}^{jj} + = \mathbf{B}_{ij}^T \mathbf{\Omega}_{ij} \mathbf{B}_{ij}$$

Algorithm

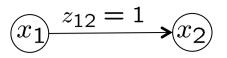
- **x**: the initial guess
- While (!converged)
 - < **H**,**b** > = buildLinearSystem(**x**);
 - Δx = solveSparse($H \Delta x = -b$);

How to Solve the Linear System?

- Linear system $H\Delta x = -b$
- Can be solved by matrix inversion (in theory)
- In practice:
 - Cholesky factorization
 - QR decomposition
 - Iterative methods such as conjugate gradients (for large systems)
- In Octave, use the backslash operator delta_x = -H\b

Example on the Blackboard...

Trivial 1D Example



Two nodes and one observation

$$\mathbf{x} = (x_1 x_2)^T = (0 \ 0)$$

$$\mathbf{z}_{12} = 1$$

$$\Omega = 2$$

$$\mathbf{e}_{12} = z_{12} - (x_2 - x_1) = 1 - (0 - 0) = 1$$

$$\mathbf{J}_{12} = (1 - 1)$$

$$\mathbf{b}_{12}^T = \mathbf{e}_{12}^T \Omega_{12} \mathbf{J}_{12} = (2 - 2)$$

$$\mathbf{H}_{12} = \mathbf{J}_{12}^T \Omega \mathbf{J}_{12} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$\mathbf{\Delta}\mathbf{x} = -\mathbf{H}_{12}^{-1} b_{12}$$

BUT det(H) = 0 ???

What Went Wrong?

- The constraint only specifies a relative constraint between both nodes
- Any poses for the nodes would be fine as long a their relative coordinates fit
- One node needs to be fixed

$$\mathbf{H} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \begin{array}{c} \text{constraint} \\ \text{that sets} \\ \mathbf{x_1} = \mathbf{0} \\ \Delta \mathbf{x} = (\mathbf{0} \mathbf{1})^T \end{array}$$

Exercise

 Consider a 2D graph where each pose x_i is parameterized as

$$\mathbf{x}_i^T = (x_i \ y_i \ \theta_i)$$

- Consider the error function $e_{ij} = t2v(\mathbf{Z}_{ij}^{-1}(\mathbf{X}_i^{-1} \cdot \mathbf{X}_j))$
- Compute the blocks of the Jacobian J

$$\mathbf{A}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_i} \qquad \mathbf{B}_{ij} = \frac{\partial \mathbf{e}(\mathbf{x}_i, \mathbf{x}_j)}{\partial \mathbf{x}_j}$$

• Hint: write the error function by using rotation matrices and translation vectors $e_{ij}(x_i, x_j) = Z_{ij}^{-1} \begin{pmatrix} R_i^T(t_j - t_i) \\ \theta_j - \theta_i \end{pmatrix}$

Conclusions

- The back-end part of the SLAM problem can be effectively solved with least squares error minimization
- The *H* matrix is typically sparse
- This sparsity allows for efficiently solving the linear system
- One of the state-of-the-art solutions to compute the maximum likelihood estimate