Advanced Techniques
for Mobile Robotics

Odometry Calibration by
Least Squares (in Octave)

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI

FREIBURG

Least Squares Minimization

Repeatedly perform the following steps:
= Linearize the system around the current guess x and
compute for each measurement

oe;(x + Ax)
e;,(x + Ax) ~e;(x) + J;Ax Ji = DA

Ax=0
= Compute the terms for the linear system
—Ze-TQ-J- H= ZJTQJ e; = €;(%)
= Solve the system to get a new increment
Ax* = —H b
= Updating the previous estimate

X «— X + Ax™*

Odometry Calibration

= We have a robot which moves in an
environment, gathering the odometry
measurements u; ,affected by a systematic
error.

= For each u; we have a ground truth u*;

= There is a function f;,(x) which, given some bias
parameters x, returns a an unbiased odometry
for the reading u;” as follows

/ (11 T1o T13)
u, = f;(x) = | xp1 x20 223 | W
\ 31 32 33)

Odometry Calibration (cont.)

= The state vector is
X:<5’311 L£12 213 X21 I22 23 X31 X332 L33)T
= The error function is
r11 T12 13
e;(x) =u; — | o1 w20 23 |y
r31 T32 I33

= Jts derivative is:

J;

B de; (%) B Ujx UWUpy UiH
= =

Uip Uiy Ujg)
Uiz Uiy UiH

Exercise

= Write a program to calibrate the odometry

= We provide an input file obtained from a real
robot.
= Format of z.dat:
= Every line is a single odometry measurement

u’, u’y U’y u, Uy U

= u’ and u are respectively the true and the
measured odometry of the system in relative
coordinates (e.g. motion of the robot between
two consecutive frames).

Exercise (in sequential steps)

= Load the measurements (into a matrix)

= Write a function A=v2t(u) that given a transformation expressed as a
vector u=[u, u, u] returns an homogeneous transformation matrix A.

= Write a function u=t2v(A) dual of the previous one.

= Write a function T=compute_odometry_trajectory(U) that computes a
trajectory in the global frame by chaining up the measurements (rows) of
the Nx3 matrix U (to visualize the data). Hint: use the two functions defined
above. Test it on the input data by displaying the trajectories.

= Define the error function e;(X) for a line of the measurement matrix. Call it
error_function(i,X,Z).
= Define the Jacobian function for the measurement i (call it jacobian(i,Z).

= Write a function X=/s_calibrate_odometry(Z) which constructs and solves
the quadratic problem. It should return the calibration parameters X.

= Write a function Uprime=apply_odometry correction(X,U) which applies
the correction to all odometries in the Nx3 matrix U. Test the computed
calibration matrix and generate a trajectory.

= Plot the real, the estimated and the corrected odometry.

= In the directory you will find an octave script ‘LsOdomCalib” which you can
use to test your program.

Transformation Functions v2t & t2v

function v=t2v(A)
v(1l:2, 1)=A(1:2,3);
v(3,1)=atan2(A(2,1),A(1,1));
endfunction

function A=v2t(v)
c=cos(v(3));
s=sin(v(3));
A=
[Cl =S, V(l) /
s, C, V(2);
O 01];
endfunction

compute_odometry_trajectory

function T=compute_odometry_trajectory(U)
T=zeros(size(U,1),3);
P=v2t(zeros(1,3));
for i=1:size(U,1),
u=U(i,1:3)";
P*=v2t(u);
T(i,1:3)=t2v(P)’;
end
end

Trajectories

odometry
48 |
®(§>CB<BCB(B®
2 — ground truth L0 ° ® -
®
®
® @
®
® N @@(B(B(B@@@@g
ol ©®® %0 oo pg?® ® @ —
e ® o © &
& ® ®®® ©
o ® @ ®
20 | ® 2 ® |
o ® @@ @@
®
®
® ®
®® ® o g%
- @ ®o & .
@ o) D
® @
© ®
© ®
® ®
@ ®
@
© ®®
? o
| | |

-86
=168 =58 2} 56 168

Error function

function e=error_function(i,X,Z2)
uprime=2(i,1:3)";
u=2(i,4:6)";
e=uprime-X*u;

end

Jacobian

function A=jacobian(i,Z)
u=2(i,4:6);
A=zeros(3,9);
A(1,1:3)=-u;
A(2,4:6)=-u;
A(3,7:9)=-u;

end

Quadratic Solver

function X=Is_calibrate_odometry(2Z)
#accumulator variables for the linear system
H=zeros(9,9);
b=zeros(9,1);
#initial solution (can be anything, se set it to the identity transformation)
X=eye(3);

#loop through the measurements and update the accumulators
for i=1:size(Z,1),
e=error_function(i,X,Z2);
A=jacobian(i,Z);
H=H+A"*A;
b=b+A"*e;
end
#solve the linear system
deltaX=-H\b;
#this reshapes the 9x1 increment vector in a 3x3 atrix
dX=reshape(deltaX,3,3)";
#computes the cumulative solution
X=X+dX;
end

applyOdometryCorrection

function C=applyOdometryCorrection(bias, U)
C=zeros(size(U,1),3);
for i=1:size(U,1),
u=U(i,1:3)";
uc=bias*u;
C(i,:)=uc’;
end
endfunction

Plots

48

calibrated

®

®
® ® S
® e o oo

l o ®0® ®

Q ®
@®®®®@@@®w@@@$®@®@@@®@®%

® o
8 ® e _ o0
e, -
o 4) @
® ® @
®®® @ @
Q o © = &
%) ® @ 9@
®®
®
o o ? 9 Qﬁ@
® o O O
® ®
®° . &
© o
©
ground truth o0 o
& O
&
& © %

|

®
@

&

2

D g ap P

-806
=160

=56 e

160

Questions

= Which one of the wheels of the robot was
deflated (right or left)?

= Do you feel confident to apply least squares
to more complex problems?

For next week you should have
understood the basic concepts of
least squares minimization.

