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Problem 

§  Given a system described by a set of n 
observation functions {fi(x)}i=1:n 

§  Let 
§  x be the state vector 
§  zi be a measurement of the state x 
§  z’i=fi(x) be a function which maps x to a 

predicted measurement z’i 
§  Given n noisy measurements z1:n about 

the state x 
§  Goal: Estimate the state x which bests 

explains the measurements z1:n 



Graphical Explanation 
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Example:  
§  x=position of a set of 3d features in space 
§  zi=coordinates of the 3d features projected on an image plane  
§  Estimate the most likely 3d position of the features in the scene 

given the images z (given the camera poses) 



Error 

§  The error ei is the difference between the 
predicted measurement and the actual one 
  

§  We assume the error to be zero mean and 
normally distributed  

§  Gaussian error with an information matrix Ωi 
§  The squared error of a measurement depends 

only on the state and it is a scalar 
  



Find the Minimum 
§  We want to find the state x* which minimizes 

the error given all measurements 

§  A general solution is to derive the global error 
function and find its nulls 

§  In general, it is a complex problem which does 
not admit closed form solutions 

 Numerical approaches 
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Approximation 
§  Assume 

§  A “good” initial guess is available  
§  The error functions are “smooth” in the 

neighborhood of the (hopefully global) minima 
§  Then, we can solve the problem by iterative 

local linearizations 
§  Linearize the error terms around the current 

initial guess 
§  Compute the first derivative the squared error  
§  Set it to zero and solve the linear system 
§  Determine the set of increments that can be 

summed to the previous estimate of the state  
to come closer to the minima 



Linearizing the Error Function 

§  We can approximate the error functions around 
an initial guess x via Taylor expansion 

 
 
§  Reminder: Jacobian 



Squared Error 

§  With the previous linearization, we can fix x and 
carry out the minimization in the increments Δx  

§  We replace the Taylor expansion in the squared 
error terms: 



Squared Error 

§  With the previous linearization, we can fix x and 
carry out the minimization in the increments Δx  

§  We replace the Taylor expansion in the squared 
error terms: 



Squared Error (cont.) 

§  All summands are scalar so the transposition 
has no effect 

§  By grouping similar terms, we obtain: 

  



Global Error 

§  Thus, the global error is the sum of the squared 
errors terms corresponding to the individual 
measurements 

§  We can use the new terms for the squared error 
to a new expression which approximates the 
global error in the neighborhood of the current 
solution x 

 



Global Error (cont.) 

with 



Quadratic Form 

§  We can write the global error terms into a 
quadratic form in Δx 

§  The approximated derivative of F(x+Δx) with 
respect to Δx in the neighborhood of the 
current solution x is:  

 
 



Linear System 

§  The approximated derivative of F(x+Δx) is:  
 
 

 
§  Setting it to zero leads to  
 
§  Which is the linear system 

§  Thus, the optimum Δx* is 



Iterative Solution: Gauss-Newton 
Repeatedly perform the following steps: 
§  Linearize the system around the current guess x 

and compute for each measurement 

§  Compute the terms for the linear system 

§  Solve the system to get a new increment 

§  Updating the previous estimate 



Example: Odometry Calibration 

§  We have a robot which moves in an 
environment, gathering the odometry 
measurements ui 

§  The odometry is affected by a systematic error 
which we want to eliminate through calibration 

§  For each ui, we have a ground truth (estimate) 
u*

i, which can, for example, be approximated  
by scan-matching or a SLAM system 



Example: Odometry Calibration 

§  There is a function fi(x) which, given some bias 
parameters x, returns a an unbiased (corrected) 
odometry for the reading ui’ as follows 

§  To obtain this function f(x), we need to find the 
parameters x 



Odometry Calibration (cont.) 

§  The state vector is 

§  The error function is 

§  Its derivative is: 

Does not depend on x, why? What are the consequences? e is linear, no need to iterate! 



Questions 

§  How do the parameters look like if the odometry 
is perfect? 

§  How many measurements (at least) are needed 
to find a solution for the calibration problem? 

§  H is symmetric. Why? 
§  How does the structure of the measurement 

function affects the structure of H? 



How to Solve the Linear System? 

§  Linear system 
§  Can be solved by matrix inversion (in theory) 
§  In practice: 

§  Cholesky factorization 
§  QR decomposition 
§  Iterative methods such as conjugate gradients 

(for large systems) 



Summary  
§  Technique to minimize a squared error function 
§  Presented approach is known as the Gauss-

Newton method 
§  Start with an initial guess 
§  Approximate the error terms by linear functions 
§  This leads to a quadratic form 
§  One obtains a linear system by settings its 

derivative to zero 
§  Solving the linear systems leads to the next 

state 
§  Iterate this procedure 


