Advanced Techniques for Mobile Robotics Least Squares

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Problem

- Given a system described by a set of n observation functions {f_i(x)}_{i=1:n}
- Let
 - *x* be the state vector
 - *z_i* be a measurement of the state *x*
 - *z'_i=f_i(x)* be a function which maps *x* to a predicted measurement *z'_i*
- Given *n* noisy measurements *z_{1:n}* about the state *x*
- Goal: Estimate the state x which bests explains the measurements $z_{1:n}$

Graphical Explanation

Example:

- **x**=position of a set of 3d features in space
- *z_i*=coordinates of the 3d features projected on an image plane
- Estimate the most likely 3d position of the features in the scene given the images *z* (given the camera poses)

Error

The error *e_i* is the difference between the predicted measurement and the actual one

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume the error to be zero mean and normally distributed
- Gaussian error with an information matrix Ω_i
- The squared error of a measurement depends only on the state and it is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \Omega_i \mathbf{e}_i(\mathbf{x})$$

Find the Minimum

 We want to find the state x* which minimizes the error given all measurements

 $\mathbf{x}^{*} = \underset{\mathbf{x}}{\operatorname{argmin}} F(\mathbf{x}) \longleftarrow \text{global error (scalar)}$ $= \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i} e_{i}(\mathbf{x}) \leftarrow \text{squared error terms (scalar)}$ $= \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{i} e_{i}^{T}(\mathbf{x}) \Omega_{i} e_{i}^{I}(\mathbf{x})$

- A general solution is to derive the global error function and find its nulls
- In general, it is a complex problem which does not admit closed form solutions

Numerical approaches

Approximation

- Assume
 - A "good" initial guess is available
 - The error functions are "smooth" in the neighborhood of the (hopefully global) minima
- Then, we can solve the problem by iterative local linearizations
 - Linearize the error terms around the current initial guess
 - Compute the first derivative the squared error
 - Set it to zero and solve the linear system
 - Determine the set of increments that can be summed to the previous estimate of the state to come closer to the minima

Linearizing the Error Function

 We can approximate the error functions around an initial guess x via Taylor expansion

$${
m e}_i({
m x}+\Delta{
m x})~\simeq~{
m e}_i+{
m J}_i({
m x})\Delta{
m x}$$

Reminder: Jacobian

$$\mathbf{J}_{f}(x) = \begin{pmatrix} \frac{\partial f_{1}(x)}{\partial x_{1}} & \frac{\partial f_{1}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{1}(x)}{\partial x_{n}} \\ \frac{\partial f_{2}(x)}{\partial x_{1}} & \frac{\partial f_{2}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{2}(x)}{\partial x_{n}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{m}(x)}{\partial x_{1}} & \frac{\partial f_{m}(x)}{\partial x_{2}} & \cdots & \frac{\partial f_{m}(x)}{\partial x_{n}} \end{pmatrix}$$

Squared Error

- With the previous linearization, we can fix x and carry out the minimization in the increments Δx
- We replace the Taylor expansion in the squared error terms:

$$e_i(\mathbf{x} + \Delta \mathbf{x}) = A$$

Squared Error

- With the previous linearization, we can fix \boldsymbol{x} and carry out the minimization in the increments $\boldsymbol{\Delta x}$
- We replace the Taylor expansion in the squared error terms:

$$egin{aligned} e_i(\mathbf{x} + \Delta \mathbf{x}) &= \mathbf{e}_i^T(\mathbf{x} + \Delta \mathbf{x}) \Omega_i \mathbf{e}_i(\mathbf{x} + \Delta \mathbf{x}) \ &\simeq & (\mathbf{e}_i + \mathbf{J}_i \Delta \mathbf{x})^T \Omega_i (\mathbf{e}_i + \mathbf{J}_i \Delta \mathbf{x}) \ &= & \mathbf{e}_i^T \Omega_i \mathbf{e}_i + \ & \mathbf{e}_i^T \Omega_i \mathbf{J}_i \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{J}_i^T \Omega_i \mathbf{e}_i + \ & \Delta \mathbf{x}^T \mathbf{J}_i^T \Omega_i \mathbf{J}_i \Delta \mathbf{x} \end{aligned}$$

Squared Error (cont.)

- All summands are scalar so the transposition has no effect
- By grouping similar terms, we obtain:

$$e_{i}(\mathbf{x} + \Delta \mathbf{x})$$

$$\simeq e_{i}^{T} \Omega_{i} e_{i} + e_{i}^{T} \Omega_{i} \mathbf{J}_{i} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{J}_{i}^{T} \Omega_{i} e_{i} + \Delta \mathbf{x}^{T} \mathbf{J}_{i}^{T} \Omega_{i} \mathbf{J}_{i} \Delta \mathbf{x}$$

$$= \underbrace{e_{i}^{T} \Omega_{i} e_{i}}_{c_{i}} + 2 \underbrace{e_{i}^{T} \Omega_{i} \mathbf{J}_{i}}_{\mathbf{b}_{i}^{T}} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \underbrace{\mathbf{J}_{i}^{T} \Omega_{i} \mathbf{J}_{i}}_{\mathbf{H}_{i}} \Delta \mathbf{x}$$

$$= c_{i} + 2 \mathbf{b}_{i}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H}_{i} \Delta \mathbf{x}$$

Global Error

- Thus, the global error is the sum of the squared errors terms corresponding to the individual measurements
- We can use the new terms for the squared error to a new expression which approximates the global error in the neighborhood of the current solution *x*

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_{i} \left(c_{i} + \mathbf{b}_{i}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H}_{i} \Delta \mathbf{x} \right)$$
$$= \sum_{i} c_{i} + 2\left(\sum_{i} \mathbf{b}_{i}^{T}\right) \Delta \mathbf{x} + \Delta \mathbf{x}^{T}\left(\sum_{i} \mathbf{H}_{i}\right) \Delta \mathbf{x}$$

Global Error (cont.)

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq \sum_{i} \left(c_{i} + \mathbf{b}_{i}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H}_{i} \Delta \mathbf{x} \right)$$

$$= \sum_{i} c_{i} + 2 \left(\sum_{i} \mathbf{b}_{i}^{T} \right) \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \left(\sum_{i} \mathbf{H}_{i} \right) \Delta \mathbf{x}$$

$$\underbrace{= c + 2\mathbf{b}^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}}$$

with

$$\mathbf{b}^{T} = \sum_{i} \mathbf{e}_{i}^{T} \mathbf{\Omega}_{i} \mathbf{J}_{i}$$
$$\mathbf{H} = \sum_{i} \mathbf{J}_{i}^{T} \mathbf{\Omega} \mathbf{J}_{i}$$

Quadratic Form

We can write the global error terms into a quadratic form in **∆**x

$$F(\mathbf{x} + \Delta \mathbf{x}) \simeq c + 2\mathbf{b}^T \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}$$

The approximated derivative of *F(x+Δx)* with respect to *Δx* in the neighborhood of the current solution *x* is:

$$rac{\partial F(\mathbf{x} + \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \simeq 2\mathbf{b} + 2\mathbf{H}\Delta \mathbf{x}$$

Linear System

• The approximated derivative of $F(x+\Delta x)$ is:

$$\frac{\partial F(\mathbf{x} + \Delta \mathbf{x})}{\partial \Delta \mathbf{x}} \simeq 2\mathbf{b} + 2\mathbf{H}\Delta \mathbf{x}$$

- Setting it to zero leads to $0 = 2b + 2H\Delta x$
- Which is the linear system

 $H\Delta x = -b$

• Thus, the optimum Δx^* is

$$\Delta \mathrm{x}^* ~=~ -\mathrm{H}^{-1}\mathrm{b}$$

Iterative Solution: Gauss-Newton

Repeatedly perform the following steps:

 Linearize the system around the current guess x and compute for each measurement

$$\mathbf{e}_i(\mathbf{x} + \Delta \mathbf{x}) \simeq \mathbf{e}_i(\mathbf{x}) + \mathbf{J}_i \Delta \mathbf{x}$$

Compute the terms for the linear system

$$\mathbf{b}^T = \sum_i \mathbf{e}_i^T \mathbf{\Omega}_i \mathbf{J}_i \qquad \mathbf{H} = \sum_i \mathbf{J}_i^T \mathbf{\Omega}_i \mathbf{J}_i$$

Solve the system to get a new increment

$$\Delta \mathrm{x}^* ~=~ -\mathrm{H}^{-1}\mathrm{b}$$

Updating the previous estimate

$$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{\Delta} \mathbf{x}^*$$

Example: Odometry Calibration

- We have a robot which moves in an environment, gathering the odometry measurements u_i
- The odometry is affected by a systematic error which we want to eliminate through calibration
- For each u_i, we have a ground truth (estimate)
 u^{*}_i, which can, for example, be approximated
 by scan-matching or a SLAM system

Example: Odometry Calibration

There is a function *f_i(x)* which, given some bias parameters *x*, returns a an unbiased (corrected) odometry for the reading *u_i* as follows

$$\mathbf{u}_{i}' = f_{i}(\mathbf{x}) = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mathbf{u}_{i}$$

To obtain this function *f(x)*, we need to find the parameters *x*

Odometry Calibration (cont.)

- The state vector is $\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33} \end{pmatrix}^T$
- The error function is

$$\mathbf{e}_{i}(\mathbf{x}) = \mathbf{u}_{i}^{*} - \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \mathbf{u}_{i}$$

Its derivative is:

$$\mathbf{J}_{i} = \frac{\partial \mathbf{e}_{i}(\mathbf{x})}{\partial \mathbf{x}} = -\begin{pmatrix} u_{i,x} & u_{i,y} & u_{i,\theta} \\ & & u_{i,x} & u_{i,y} & u_{i,\theta} \end{pmatrix}$$

$$\underbrace{\mathbf{D}_{oes not depend on \mathbf{x}, why? What are the consequences?} \quad \Longrightarrow \quad \mathbf{e} \text{ is linear, no need to iterate!}$$

Questions

- How do the parameters look like if the odometry is perfect?
- How many measurements (at least) are needed to find a solution for the calibration problem?
- *H* is symmetric. Why?
- How does the structure of the measurement function affects the structure of *H*?

How to Solve the Linear System?

- Linear system $H\Delta x = -b$
- Can be solved by matrix inversion (in theory)
- In practice:
 - Cholesky factorization
 - QR decomposition
 - Iterative methods such as conjugate gradients (for large systems)

Summary

- Technique to minimize a squared error function
- Presented approach is known as the Gauss-Newton method
- Start with an initial guess
- Approximate the error terms by linear functions
- This leads to a quadratic form
- One obtains a linear system by settings its derivative to zero
- Solving the linear systems leads to the next state
- Iterate this procedure