Introduction to Mobile Robotics

Welcome

Lukas Luft, Wolfram Burgard

Today

- This course
- Robotics in the past and today

Organization

- Wed 14:00 16:00
 Fr 16:00 17:00
 lectures, discussions
- Fr 17:00 18:00 homework, practical exercises (Python)

Web page: www.informatik.uni-freiburg.de/~ais/

Exam: Oral or written

People

Teaching:

Wolfram Burgard

Teaching assistants:

- Marina Kollmitz
- Johannes Meyer
- Iman Nematollahi
- Lukas Luft
- Daniel Büscher

Goal of this course

 Provide an overview of problems and approaches in mobile robotics

Probabilistic reasoning: Dealing with noisy data

Hands-on experience

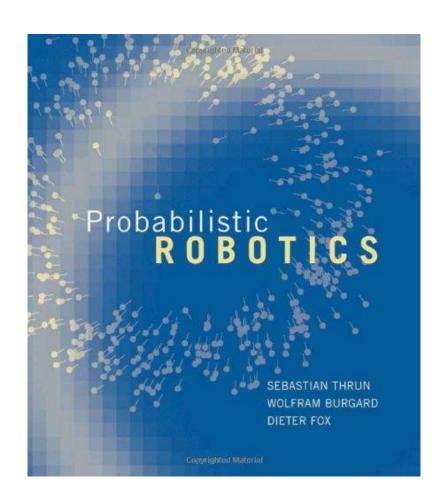
Content of this Course

- 1. Linear Algebra
- 2. Wheeled Locomotion
- 3. Sensors
- 4. Probabilities and Bayes
- 5. Probabilistic Motion Models
- 6. Probabilistic Sensor Models
- 7. Mapping with Known Poses
- 8. The Kalman Filter
- The Extended Kalman Filter
- 10. Discrete Filters
- 11. The Particle Filter, MCL

- 12. SLAM: Simultaneous Localization and Mapping
- 13. SLAM: Landmark-based FastSLAM
- 14. SLAM: Grid-based FastSLAM
- 15. SLAM: Graph-based SLAM
- 16. Techniques for 3D Mapping
- 17. Iterative Closest Points Algorithm
- 18. Path Planning and Collision Avoidance
- 19. Multi-Robot Exploration
- 20. Information-Driven Exploration
- 21. Summary

Reference Book

Thrun, Burgard, and Fox: "Probabilistic Robotics"



Relevant other Courses

- Foundations of Artificial Intelligence
- Computer Vision
- Machine Learning
- and many others from the area of cognitive technical systems.

Opportunities

- Projects
- Practicals
- Seminars
- Thesis

... your future!

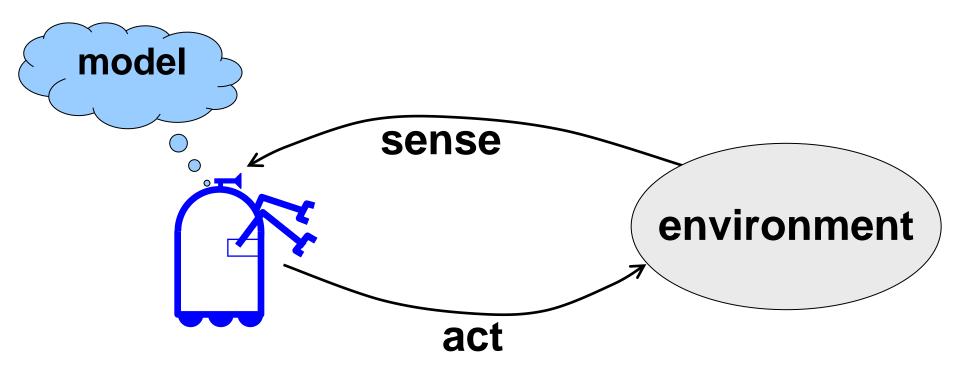
Tasks Addressed that Need to be Solved by Robots

- Navigation
- Perception
- Learning
- Cooperation
- Acting
- Interaction
- Robot development
- Manipulation
- Grasping
- Planning
- Reasoning

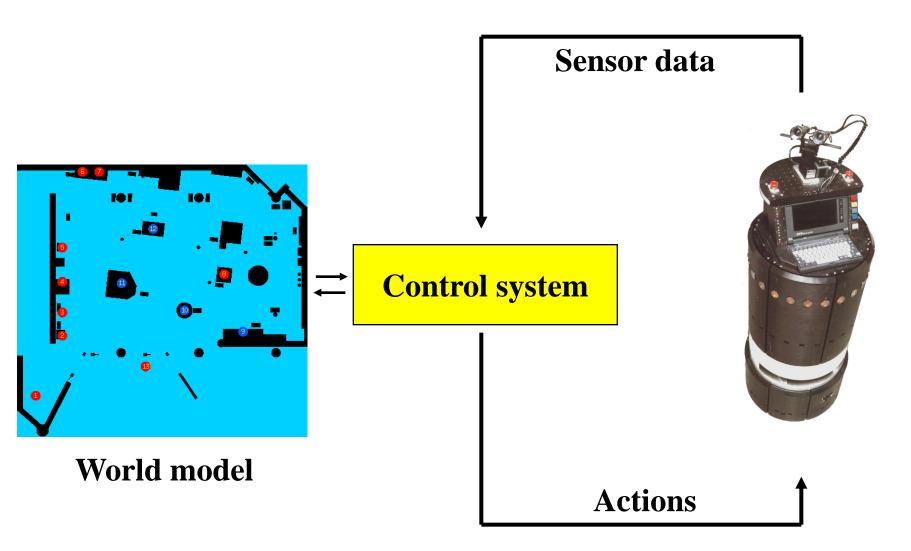
• • •

Autonomous Robot Systems

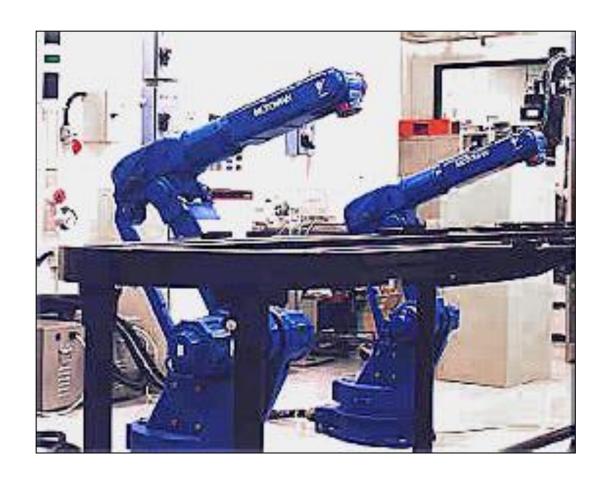
- perceive their environment and
- generate actions to achieve their goals.



Autonomous Robot Systems



Robotics Yesterday

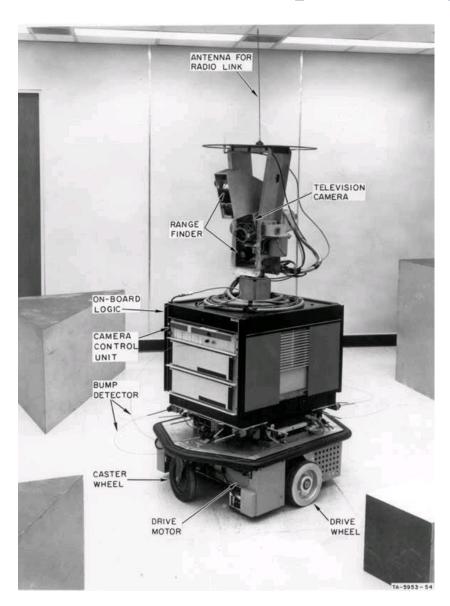


Current Trends in Robotics

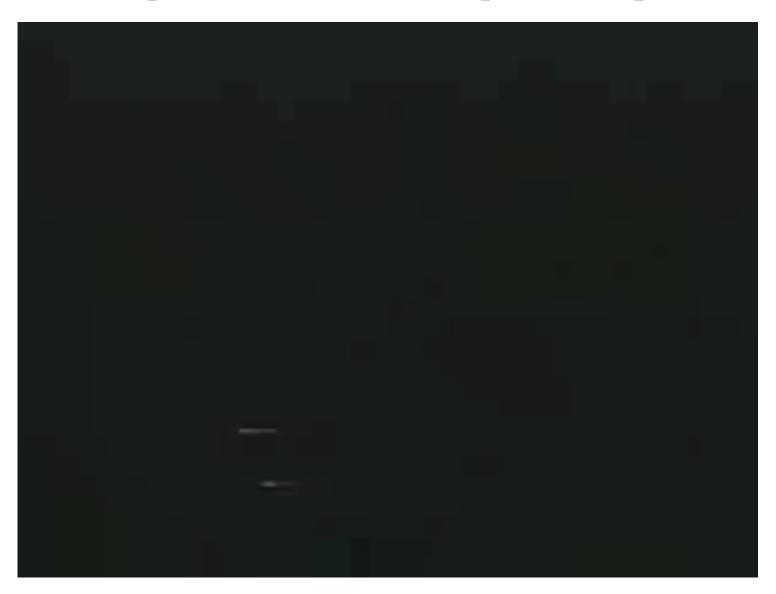
Robots are moving away from factory floors to

- Entertainment, toys
- Personal services
- Medical, surgery
- Industrial automation (mining, harvesting, ...)
- Hazardous environments (space, underwater)

Shakey the Robot (1966)



Shakey the Robot (1966)



Robotics Today

- Lawn mowers
- Vacuum cleaners
- Self-driving cars
- Logistics
- **-** ...

The Helpmate System

Autonomous Vacuum Cleaners

Autonomous Lawn Mowers

DARPA Grand Challenge

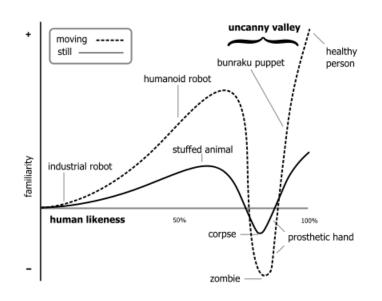
[Courtesy by Sebastian Thrun]

Walking Robots

[Courtesy by Boston Dynamics]

Androids

Overcoming the uncanny valley



[Courtesy by Hiroshi Ishiguro]

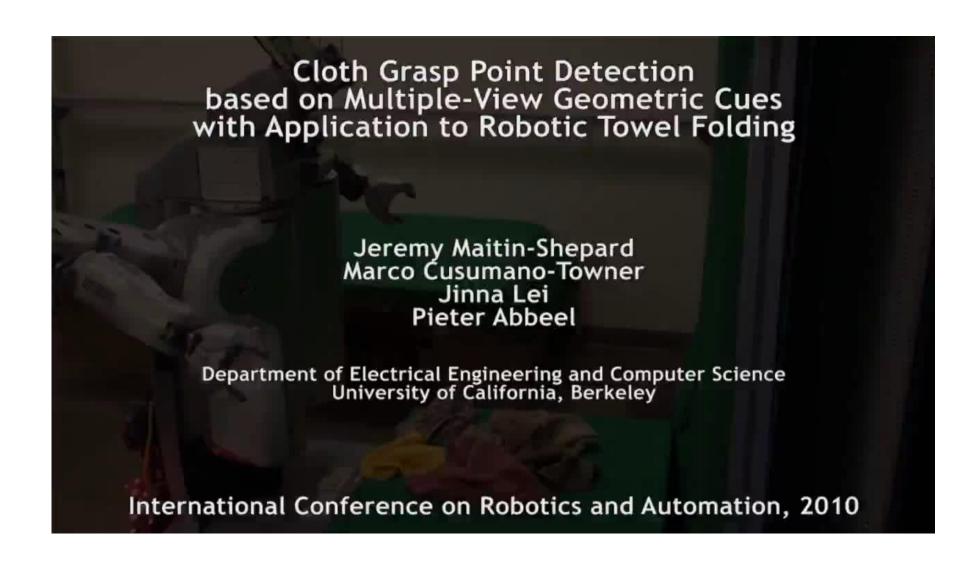
Driving in the Google Car

Autonomous Motorcycles

[Courtesy by Anthony Levandowski]

The Google Self Driving Car

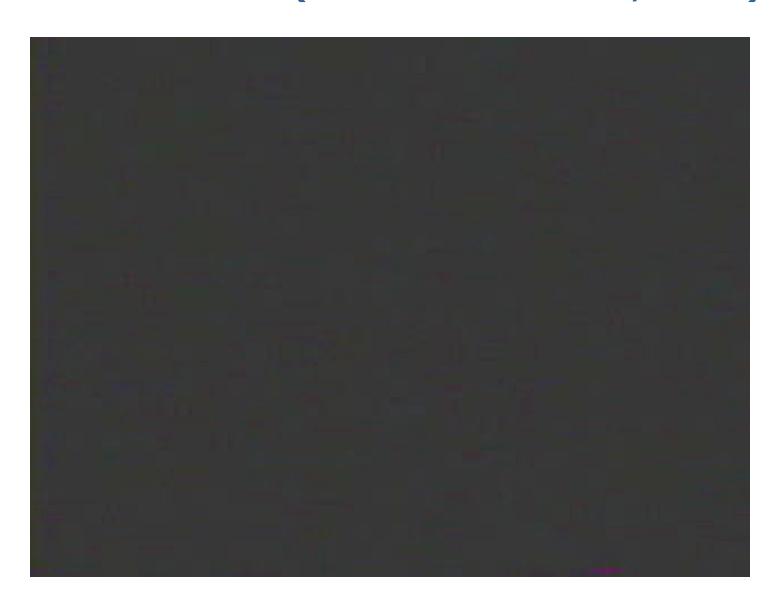
Folding Towels



Rhino

(Univ. Bonn + CMU, 1997)

Minerva (CMU + Univ. Bonn, 1998)

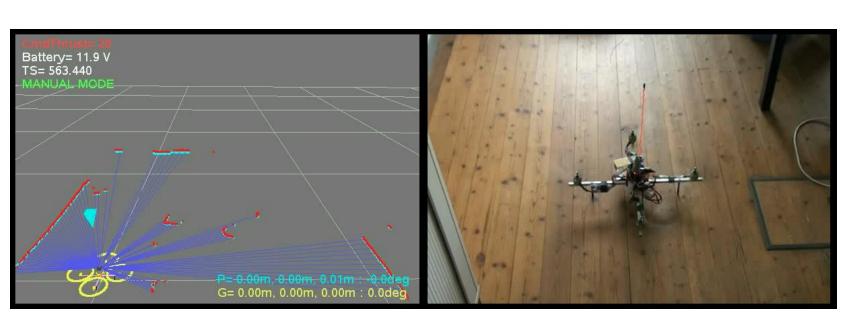


Robotics in Freiburg

Autonomous Parking

Autonomous Quadrotor Navigation

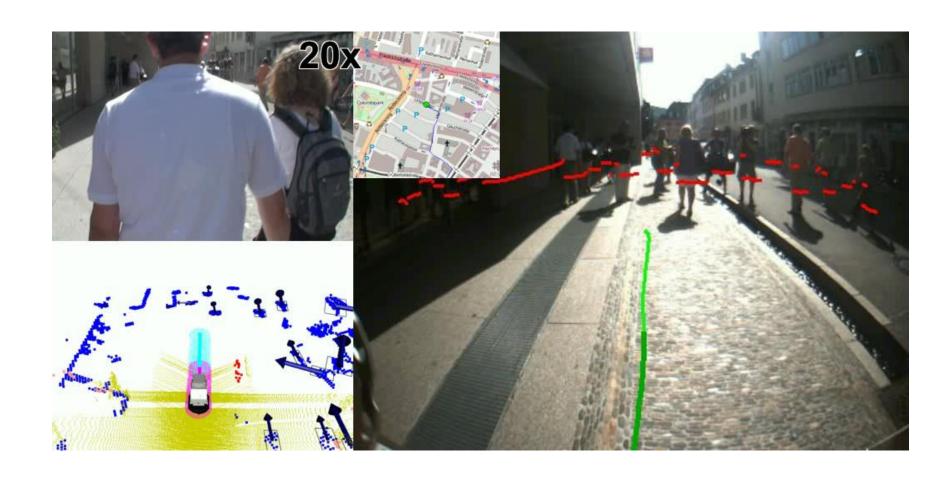
Custom-built system:
laser range finder
inertial measurement unit
embedded CPU
laser mirror



Precise Localization and Positioning for Mobile Robots

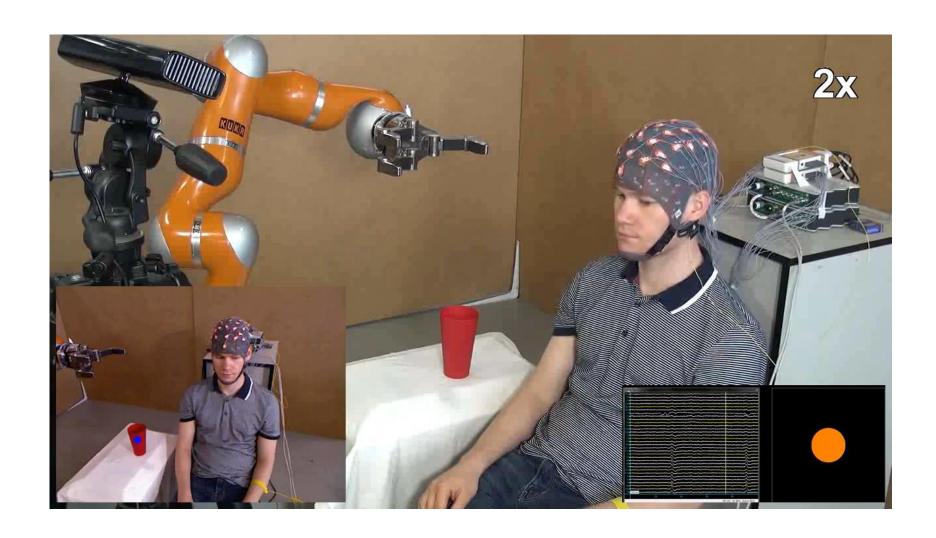
Obelix – A Robot Traveling to Downtown Freiburg

The Obelix Challenge (Aug 21, 2012)



The Tagesthemen-Report

Brain-controlled Robots



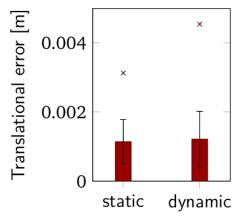
Teaching: Student Project on the Autonomous Portrait Robot

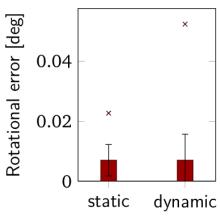
Final Result

Other Cool Stuff from AIS

Accurate Localization

- KUKA omniMove (11t)
- Safety scanners
- Error in the area of millimeters
- Even in dynamic environments





26 Units installed at Boeing

- Fuselage assembly
- 20 vehicles to transport industrial robots for drilling and filling of 60,000 fasteners in
- 6 vehicles for logistics of parts, work stands and fuselages

Accurate Indoor RGB-D Localization with a Google Tango Device based on 2D Floor Plans

Wera Winterhalter, Freya Fleckenstein, Bastian Steder, Wolfram Burgard, Luciano Spinello

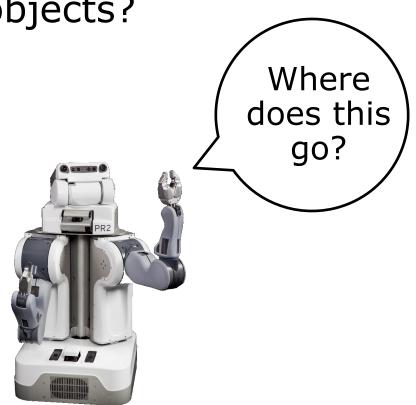
Deep Learning to Manipulate from Parallel Interaction

Source: Google Research Blog

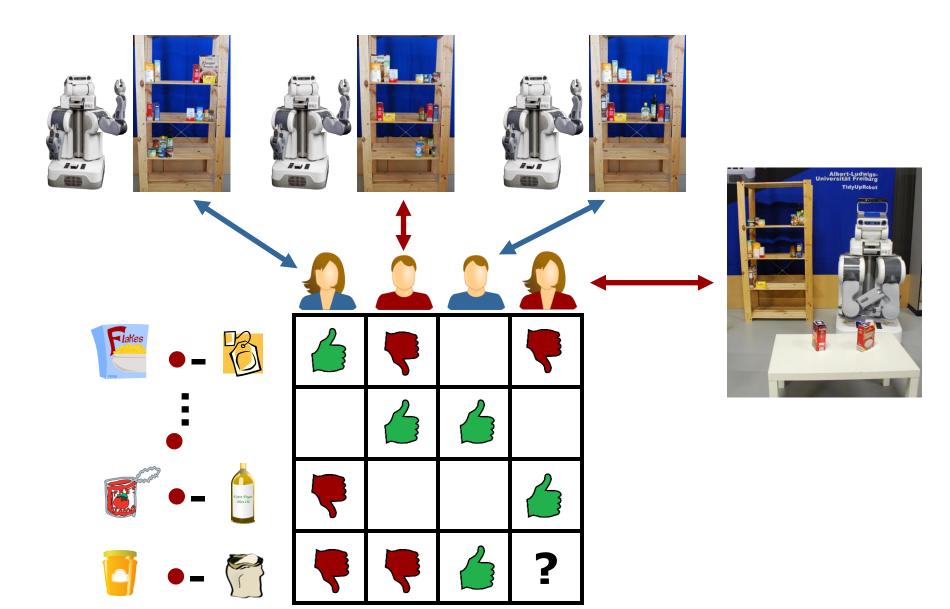
Learning User Preferences

- Task preferences are subjective
- Fixed rules do not match all users
- Constantly querying humans is suboptimal

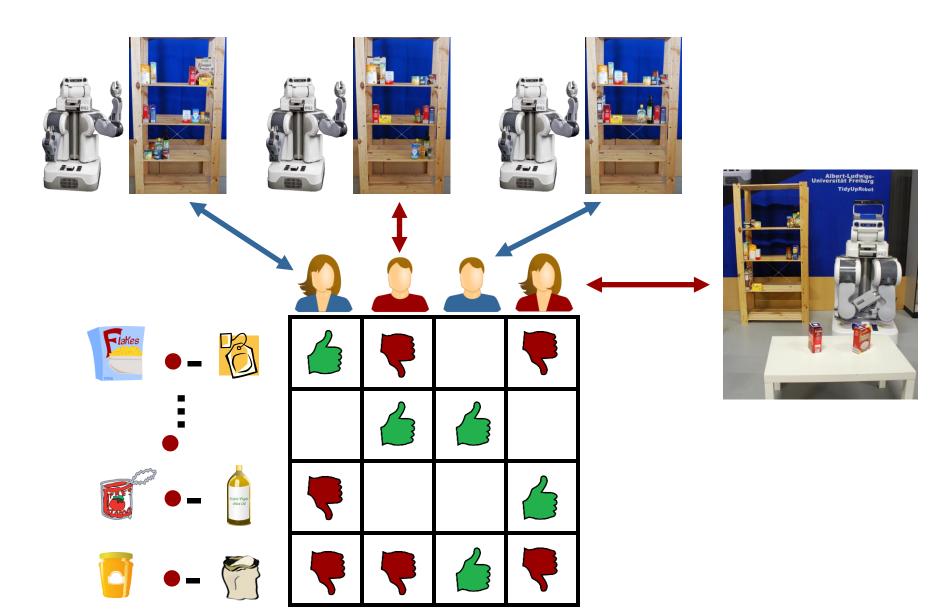
How to handle new objects?



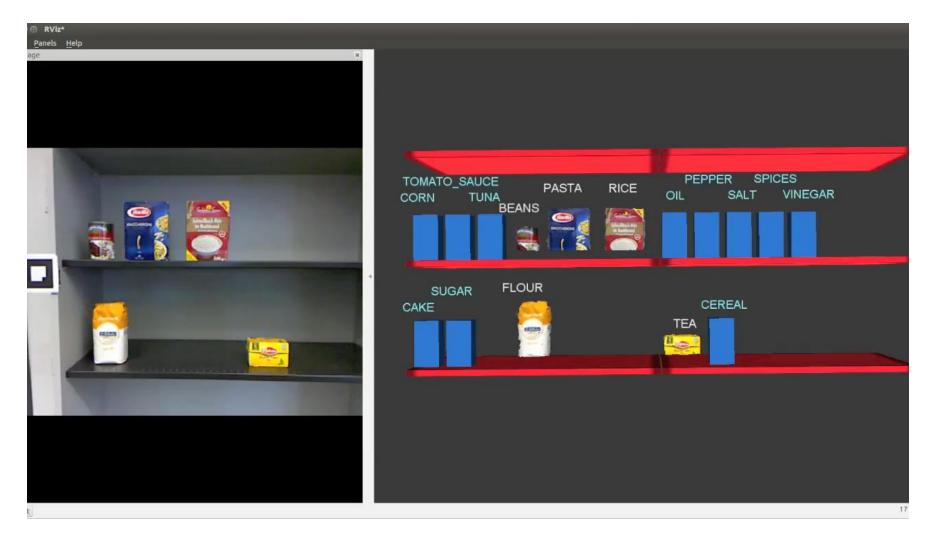
Collaborative Filtering



Collaborative Filtering



Online Prediction of Preferences



Localization in Urban Environments

- Inaccurate (if even available) GPS signal
- No map
- Limited Internet

Motivation

Example

Example contin.

Text: irpostbankfmarzcenter tllgi

Matched Landmarks:

Postbank finanzcenter

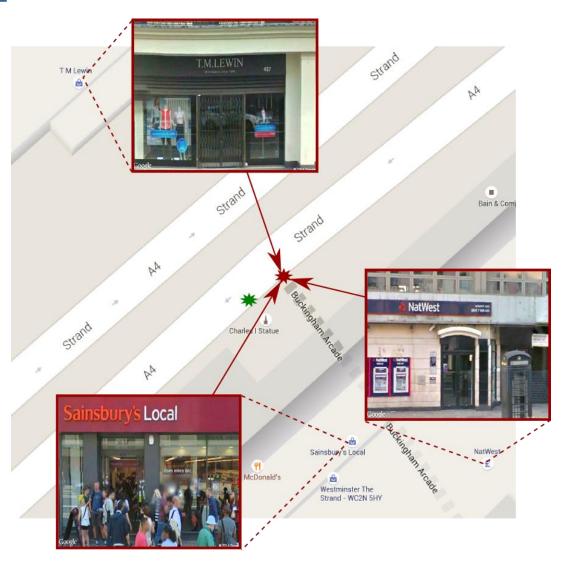
Text: melange Matched Landmarks:

- Melange
- Melange

Text: casanova Matched Landmarks:

Casanova

Example



Deep Learning Applications

RGB-D

object

Images

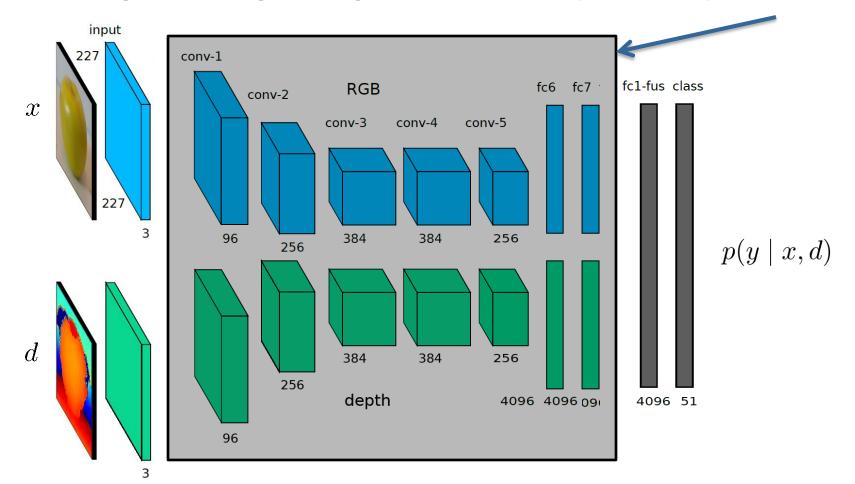
human part

Sound

terrain

DCN for Object Recognition

- Fusion layers automatically learn to combine feature responses of the two network streams
- During training, weights in first layers stay fixed



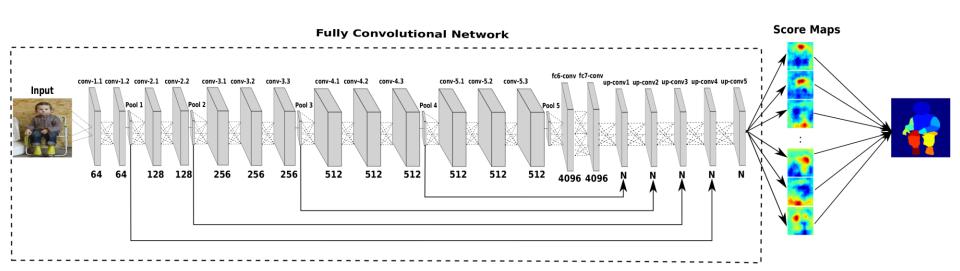
Learning Results

Category-Level Recognition [%] (51 categories)

Method	RGB	Depth	RGB-D
CNN-RNN	80.8	78.9	86.8
HMP	82.4	81.2	87.5
CaRFs	N/A	N/A	88.1
CNN Features	83.1	N/A	89.4
This work, Fus-CNN	84.1	83.8	91.3

Network Architecture

- Fully convolutional network
 - Contraction and expansion of network input
 - Up-convolution operation for expansion
- Pixel input, pixel output



Deep Learning for Body Part Segmentation

•Input Image

Ground Truth

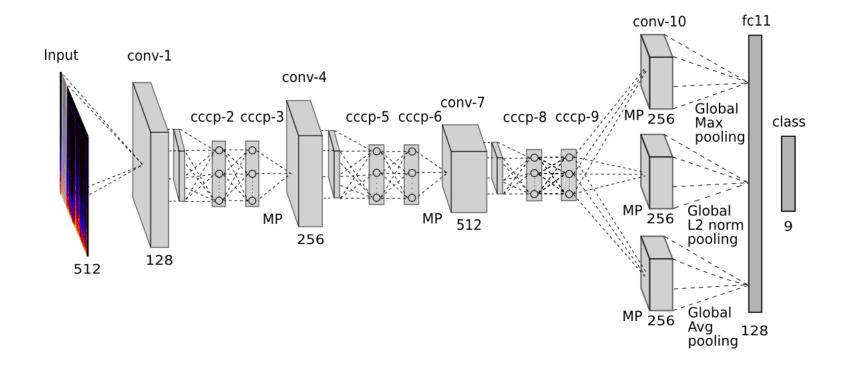
Segmentation mask

Method	Head	Torso	Arms	Legs	IOU
FCN Ours		62.49 79.45			

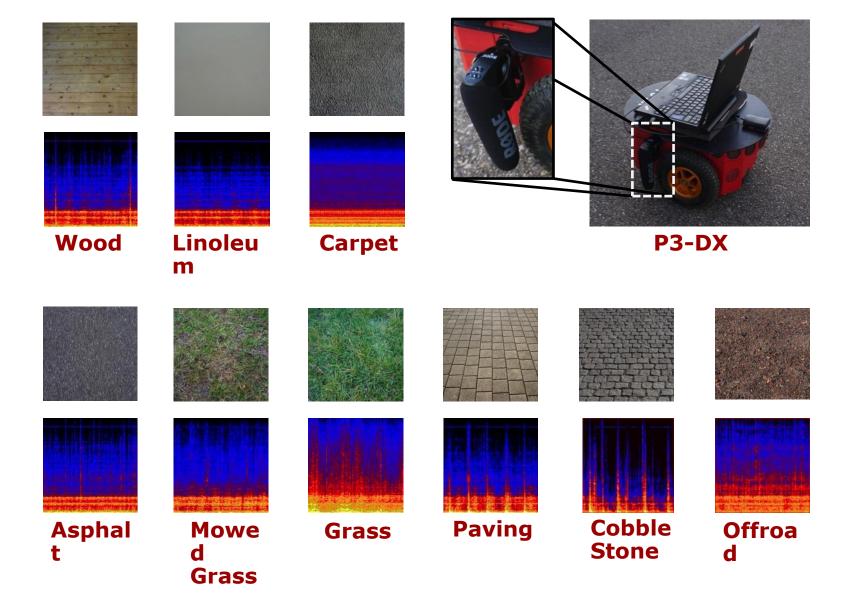
Deep Learning for Terrain Classification using Sound

Network Architecture

- Novel architecture designed for unstructured sound data
- Global pooling gathers statistics of learned features across time



Data Collection



Results - Baseline Comparison

			(2001112
Features	SVM Linear	SVM RBF	window) k-NN
Ginna [1]	44.87 ± 0.70	37.51 ± 0.74	57.26 ± 0.60
Spectral [2]	84.48 ± 0.36	78.65 ± 0.45	76.02 ± 0.43
Ginna & Shape [3]	85.50 ± 0.34	80.37 ± 0.55	78.17 ± 0.37
MFCC & Chroma [4]	88.95 ± 0.21	88.55 ± 0.20	88.43 ± 0.15
Trimbral [5]	89.07 ± 0.12	86.74 ± 0.25	84.82 ± 0.54
Cepstral [6]	89.93 ± 0.21	78.93 ± 0.62	88.63 ± 0.06

90.91% imping en 500 those evil blood pyrevious state of the art

- [1] T. Giannakopoulos, K. Dimitrios, A. Andreas, and T. Sergios, SETN 2006
- [2] M. C. Wellman, N. Srour, and D. B. Hillis, SPIE 1997.
- [3] J. Libby and A. Stentz, ICRA 2012
- [4] D. Ellis, ISMIR 2007
- [5] G. Tzanetakis and P. Cook, IEEE TASLP 2002
- [6] V. Brijesh , and M. Blumenstein, Pattern Recognition Technologies and Applications 2008

Thank you

... and enjoy the course!