
Foundations of Artificial Intelligence
6. Constraint Satisfaction Problems

CSPs as Search Problems, Solving CSPs, Problem Structure

Joschka Boedecker and Wolfram Burgard and
Frank Hutter and Bernhard Nebel and Michael Tangermann

Albert-Ludwigs-Universität Freiburg

May 15, 2019

A motivating example of CSP (here: graph coloring)

FCC Spectrum Auction in 2017
Wireless frequency spectra: demand increases
US Federal Communications Commission (FCC) held 13-month auction

Key Computational Problem: feasibility
testing based on interference constraints

2991 stations (nodes) &
2.7 million interference constraints:
stations in neighboring regions cannot use
too similar frequencies
Need to check feasibility whenever an offer
is made
More instances checkable: higher revenue

Formulated as a CSP and solved with SAT solvers
(improved by meta-algorithmics, see future lecture)

Improved ratio of instances solved from 73% to 99.6%
Net income for US government: $7 billion (used to pay down national debt)

(University of Freiburg) Foundations of AI May 15, 2019 2 / 44

A motivating example of CSP (here: graph coloring)

FCC Spectrum Auction in 2017
Wireless frequency spectra: demand increases
US Federal Communications Commission (FCC) held 13-month auction

Key Computational Problem: feasibility
testing based on interference constraints

2991 stations (nodes) &
2.7 million interference constraints:
stations in neighboring regions cannot use
too similar frequencies
Need to check feasibility whenever an offer
is made
More instances checkable: higher revenue

Formulated as a CSP and solved with SAT solvers
(improved by meta-algorithmics, see future lecture)

Improved ratio of instances solved from 73% to 99.6%
Net income for US government: $7 billion (used to pay down national debt)

(University of Freiburg) Foundations of AI May 15, 2019 2 / 44

A motivating example of CSP (here: graph coloring)

FCC Spectrum Auction in 2017
Wireless frequency spectra: demand increases
US Federal Communications Commission (FCC) held 13-month auction

Key Computational Problem: feasibility
testing based on interference constraints

2991 stations (nodes) &
2.7 million interference constraints:
stations in neighboring regions cannot use
too similar frequencies
Need to check feasibility whenever an offer
is made
More instances checkable: higher revenue

Formulated as a CSP and solved with SAT solvers
(improved by meta-algorithmics, see future lecture)

Improved ratio of instances solved from 73% to 99.6%
Net income for US government: $7 billion (used to pay down national debt)

(University of Freiburg) Foundations of AI May 15, 2019 2 / 44

Contents

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 3 / 44

Lecture Overview

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 4 / 44

Constraint Satisfaction Problems

A Constraint Satisfaction Problems (CSP) is given by

a set of variables {x1, x2, . . . , xn},
an associated set of value domains {dom1, dom2, . . . , domn}, and
a set of constraints. i.e., relations, over the variables.
An assignment of values to variables that satisfies all constraints is a
solution of such a CSP.

If CSPs are viewed as search problems, states are explicitly represented
as variable assignments. CSP search algorithms take advantage of this
structure.

The main idea is to exploit the constraints to eliminate large portions of
search space.

Formal representation language with associated general inference
algorithms

(University of Freiburg) Foundations of AI May 15, 2019 5 / 44

Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Variables: WA,NT ,SA,Q ,NSW ,V ,T

Values: {red , green, blue}
Constraints: adjacent regions must have different colors,
e.g., NSW 6= V

(University of Freiburg) Foundations of AI May 15, 2019 6 / 44

One Solution

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solution assignment:

{WA = red ,NT = green,Q = red ,NSW = green,V = red ,SA =
blue,T = green}

(University of Freiburg) Foundations of AI May 15, 2019 7 / 44

Constraint Graph

Victoria

WA

NT

SA

Q

NSW

V

T

a constraint graph can be used to visualize binary constraints

for higher order constraints, hyper-graph representations might be used

Nodes = variables, arcs = constraints

(University of Freiburg) Foundations of AI May 15, 2019 8 / 44

Variations

Binary, ternary, or even higher arity (e.g., ALL DIFFERENT)

Finite domains (d values) → dn possible variable assignments

Infinite domains (reals, integers)

linear constraints (each variable occurs only in linear form): solvable
(in P if real)
nonlinear constraints: unsolvable

(University of Freiburg) Foundations of AI May 15, 2019 9 / 44

Applications

Timetabling (classes, rooms, times)

Configuration (hardware, cars, . . .)

Nurse rostering

Scheduling (sports, etc)

Sudoku

. . .

(University of Freiburg) Foundations of AI May 15, 2019 10 / 44

Lecture Overview

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 11 / 44

Backtracking Search over Assignments

Assign values to variables step by step (order does not matter)

Consider only one variable per search node!

DFS with single-variable assignments is called backtracking search

(University of Freiburg) Foundations of AI May 15, 2019 12 / 44

Algorithm
14 Chapter 6. Constraint Satisfaction Problems

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ },csp)

function BACKTRACK(assignment ,csp) returns a solution, or failure
if assignment is completethen return assignment
var← SELECT-UNASSIGNED-VARIABLE(csp)
for each value in ORDER-DOMAIN -VALUES(var ,assignment ,csp) do

if value is consistent withassignment then
add{var = value} to assignment
inferences← INFERENCE(csp,var ,value)
if inferences 6= failure then

addinferences to assignment
result←BACKTRACK(assignment ,csp)
if result 6= failure then

return result
remove{var = value} andinferences from assignment

return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The algo-
rithm is modeled on the recursive depth-first search of Chapter ??. By varying the functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN -VALUES, we can implement the general-
purpose heuristics discussed in the text. The function INFERENCEcan optionally be used to impose
arc-, path-, ork-consistency, as desired. If a value choice leads to failure(noticed either by INFERENCE

or by BACKTRACK), then value assignments (including those made by INFERENCE) are removed from
the current assignment and a new value is tried.

function M IN-CONFLICTS(csp,max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps , the number of steps allowed before giving up

current←an initial complete assignment forcsp
for i = 1 tomax steps do

if current is a solution forcsp then return current
var← a randomly chosen conflicted variable fromcsp.VARIABLES

value← the valuev for var that minimizes CONFLICTS(var ,v ,current ,csp)
setvar = value in current

return failure

Figure 6.8 The MIN-CONFLICTSalgorithm for solving CSPs by local search. The initial state may
be chosen randomly or by a greedy assignment process that chooses a minimal-conflict value for each
variable in turn. The CONFLICTS function counts the number of constraints violated by a particular
value, given the rest of the current assignment.

(University of Freiburg) Foundations of AI May 15, 2019 13 / 44

Example (1)

(University of Freiburg) Foundations of AI May 15, 2019 14 / 44

Example (2)

(University of Freiburg) Foundations of AI May 15, 2019 15 / 44

Example (3)

(University of Freiburg) Foundations of AI May 15, 2019 16 / 44

Example (4)

(University of Freiburg) Foundations of AI May 15, 2019 17 / 44

Lecture Overview

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 18 / 44

Improving Efficiency:
CSP Heuristics & Pruning Techniques

Variable ordering: Which one to assign first?

Value ordering: Which value to try first?

Try to detect failures early on

Try to exploit problem structure

→ Note: all this is not problem-specific!

(University of Freiburg) Foundations of AI May 15, 2019 19 / 44

Variable Ordering:
Most constrained first

Most constrained variable:

choose the variable with the fewest remaining legal values
→ reduces branching factor!

(University of Freiburg) Foundations of AI May 15, 2019 20 / 44

Variable Ordering:
Most Constraining Variable First

Break ties among variables with the same number of remaining legal
values:

choose variable with the most constraints on remaining unassigned
variables

→ reduces branching factor in the next steps

(University of Freiburg) Foundations of AI May 15, 2019 21 / 44

Value Ordering:
Least Constraining Value First

Given a variable,

choose first a value that rules out the fewest values in the remaining
unassigned variables

→ We want to find an assignment that satisfies the constraints (of
course, this does not help if the given problem is unsatisfiable.)

Allows 1 value for SA

Allows 0 values for SA

(University of Freiburg) Foundations of AI May 15, 2019 22 / 44

Rule out Failures early on:
Forward Checking

Whenever a value is assigned to a variable, values that are now illegal
for other variables are removed

Implements what the ordering heuristics implicitly compute

WA = red, then NT cannot become red

If all values are removed for one variable, we can stop!

(University of Freiburg) Foundations of AI May 15, 2019 23 / 44

Forward Checking (1)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 24 / 44

Forward Checking (2)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 25 / 44

Forward Checking (3)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 26 / 44

Forward Checking (4)

Keep track of remaining values

Stop if all have been removed

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 27 / 44

Lecture Overview

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 28 / 44

Forward Checking:
Sometimes it Misses Something

Forward Checking propagates information from assigned to unassigned
variables

However, there is no propagation between unassigned variables

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 29 / 44

Arc Consistency

A directed arc X → Y is “consistent” iff

for every value x of X, there exists a value y of Y , such that (x, y)
satisfies the constraint between X and Y

Remove values from the domain of X to enforce arc-consistency

Arc consistency detects failures earlier

Can be used as preprocessing technique or as a propagation step during
backtracking

(University of Freiburg) Foundations of AI May 15, 2019 30 / 44

Arc Consistency Example

WA NT Q NSW V SA T

(University of Freiburg) Foundations of AI May 15, 2019 31 / 44

AC-3 Algorithm

6
CONSTRAINT
SATISFACTION
PROBLEMS

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components(X, D, C)
local variables: queue , a queue of arcs, initially all the arcs incsp

while queue is not emptydo
(Xi, Xj)←REMOVE-FIRST(queue)
if REVISE(csp, Xi, Xj) then

if size ofDi = 0 then return false
for each Xk in Xi.NEIGHBORS- {Xj} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain ofXi

revised← false
for each x in Di do

if no valuey in Dj allows (x ,y) to satisfy the constraint betweenXi andXj then
deletex from Di

revised← true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-
consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The
name “AC-3” was used by the algorithm’s inventor (?) becauseit’s the third version developed in the
paper.

13

(University of Freiburg) Foundations of AI May 15, 2019 32 / 44

Properties of AC-3

What is the computational complexity of AC-3?

Let n denote the number of nodes, and let d denote the maximal number of
elements in a domain
Hint: what is the complexity of function REVISE, how often can it return
true in the worst case, and how often is it thus called in the worst case?

AC-3 runs in O(d3n2) time

REVISE takes O(d2) (for each element x ∈ Di, you need to check each
element y ∈ Dj)
Each time REVISE returns true one element of Xi is eliminated; there are
only max. d elements for each of the n variables
Each time REVISE returns true up to n constraints are added to the queue
Alltogether, in the worst case, REVISE can only be called a maximum of
O(n2d) times, each taking time O(d2)

Of course, AC-3 does not detect all inconsistencies (which is an
NP-hard problem)

(University of Freiburg) Foundations of AI May 15, 2019 33 / 44

Properties of AC-3

What is the computational complexity of AC-3?

Let n denote the number of nodes, and let d denote the maximal number of
elements in a domain
Hint: what is the complexity of function REVISE, how often can it return
true in the worst case, and how often is it thus called in the worst case?

AC-3 runs in O(d3n2) time

REVISE takes O(d2) (for each element x ∈ Di, you need to check each
element y ∈ Dj)
Each time REVISE returns true one element of Xi is eliminated; there are
only max. d elements for each of the n variables
Each time REVISE returns true up to n constraints are added to the queue
Alltogether, in the worst case, REVISE can only be called a maximum of
O(n2d) times, each taking time O(d2)

Of course, AC-3 does not detect all inconsistencies (which is an
NP-hard problem)

(University of Freiburg) Foundations of AI May 15, 2019 33 / 44

Properties of AC-3

What is the computational complexity of AC-3?

Let n denote the number of nodes, and let d denote the maximal number of
elements in a domain
Hint: what is the complexity of function REVISE, how often can it return
true in the worst case, and how often is it thus called in the worst case?

AC-3 runs in O(d3n2) time

REVISE takes O(d2) (for each element x ∈ Di, you need to check each
element y ∈ Dj)
Each time REVISE returns true one element of Xi is eliminated; there are
only max. d elements for each of the n variables
Each time REVISE returns true up to n constraints are added to the queue
Alltogether, in the worst case, REVISE can only be called a maximum of
O(n2d) times, each taking time O(d2)

Of course, AC-3 does not detect all inconsistencies (which is an
NP-hard problem)

(University of Freiburg) Foundations of AI May 15, 2019 33 / 44

Lecture Overview

1 What are CSPs?

2 Backtracking Search for CSPs

3 CSP Heuristics

4 Constraint Propagation

5 Problem Structure

(University of Freiburg) Foundations of AI May 15, 2019 34 / 44

Problem Structure (1)

Victoria

WA

NT

SA

Q

NSW

V

T

This example CSP has two independent components

Identifiable as connected components of constraint graph

Can reduce the search space dramatically

(University of Freiburg) Foundations of AI May 15, 2019 35 / 44

Problem Structure (2):
Tree-structured CSPs

A

B

C

D

E

F

If the CSP graph is a tree, then it can be solved in O(nd2) (general
CSPs need in the worst case O(dn)).

Idea: Pick root, order nodes, apply arc consistency from leaves to root,
and assign values starting at root.

(University of Freiburg) Foundations of AI May 15, 2019 36 / 44

Problem Structure (2):
Tree-structured CSPs

A

B

C

D

E

F

A B C D E F

(a) (b)

Pick any variable as root; choose an ordering such that each variable
appears after its parent in the tree.

Apply arc-consistency to (xi, xk) when xi is the parent of xk for all
k = n down to 2 (any tree with n nodes has n− 1 arcs and per arc d2

comparisons are needed, which results in a complexity of O(nd2)).

Now we can start at x1 assigning values from the remaining domains
without creating any conflict in one sweep through the tree!

This algorithm is linear in n.

(University of Freiburg) Foundations of AI May 15, 2019 37 / 44

Problem Structure (3):
Almost Tree-structured

Idea: Reduce the graph structure to a tree by fixing values in a reasonably
chosen subset

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Instantiate a variable and prune values in neighboring variables is called
Conditioning

(University of Freiburg) Foundations of AI May 15, 2019 38 / 44

Problem Structure (4):
Almost Tree-structured

Algorithm Cutset Conditioning:

1 Choose a subset S of the CSPs variables such that the constraint graph
becomes a tree after removal of S. The set S is called a cycle cutset.

2 For each possible assignment of variables in S that satisfies all
constraints on S
1 remove from the domains of the remaining variables any values that are

inconsistent with the assignments for S, and
2 if the remaining CSP has a solution, return it together with the assignment

for S

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Note: Finding the smallest cycle cutset is NP hard, but several efficient
approximation algorithms are known.

(University of Freiburg) Foundations of AI May 15, 2019 39 / 44

Another Method:
Tree Decomposition (1)

Decompose the problem into a set of connected sub-problems, where
two sub-problems are connected when they share a constraint

Solve the sub-problems independently and then combine the solutions

WA

NT

SA

T

SA NSW

V

SA

Q

NSW

NT

SA

Q

(University of Freiburg) Foundations of AI May 15, 2019 40 / 44

Another Method:
Tree Decomposition (2)

A tree decomposition must satisfy the following conditions:

Every variable of the original problem appears in at least one sub-problem

Every constraint appears in at least one sub-problem

If a variable appears in two sub-problems, it must appear in all sub-problems
on the path between the two sub-problems

The connections form a tree

WA

NT

SA

T

SA NSW

V

SA

Q

NSW

NT

SA

Q

(University of Freiburg) Foundations of AI May 15, 2019 41 / 44

Another Method:
Tree Decomposition (3)

Consider sub-problems as new mega-variables, which have values defined
by the solutions to the sub-problems

Use technique for tree-structured CSP to find an overall solution
(constraint is to have identical values for the same variable)

(University of Freiburg) Foundations of AI May 15, 2019 42 / 44

Tree Width

The aim is to make the subproblems as small as possible. The tree width
w of a tree decomposition is the size of largest sub-problem minus 1

Tree width of a graph is minimal tree width over all possible tree
decompositions

If a graph has tree width w and we know a tree decomposition with that
width, we can solve the problem in O(ndw+1)

Unfortunately, finding a tree decomposition with minimal tree width is
NP-hard. However, there are heuristic methods that work well in
practice.

(University of Freiburg) Foundations of AI May 15, 2019 43 / 44

Summary

CSPs are a special kind of search problem:

states are value assignments
goal test is defined by constraints

Backtracking = DFS with one variable assigned per node. Other
intelligent backtracking techniques possible

Variable/value ordering heuristics can help dramatically

Constraint propagation prunes the search space

Tree structure of CSP graph simplifies problem significantly

Cutset conditioning and tree decomposition are two ways to transform
part of the problem into a tree

CSPs can also be solved using local search

(University of Freiburg) Foundations of AI May 15, 2019 44 / 44

