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The SLAM Problem

= SLAM stands for simultaneous localization
and mapping

= The task of building a map while estimating
the pose of the robot relative to this map

= Why is SLAM hard?
Chicken-or-egg problem:

= A map Is needed to localize the robot
= A pose estimate is needed to build a map



The SLAM Problem

A robot moving through an unknown, static environment

Given: el

= The robot’ s
controls

= Observations of
nearby features .

Estimate:

= Map of features
= Path of the robot




Map Representations

Typical models are:

= Feature maps

= Grid maps (occupancy or reflection
probability maps)




Why iI1s SLAM a Hard Problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map



Why iI1s SLAM a Hard Problem?
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* In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations



Data Associlation Problem
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= A data association Is an assignment of
observations to landmarks

* In general there are more than (')

(n observations, m landmarks) possible
associations

= Also called “assignment problem”



Particle Filters

= Represent belief by random samples

= Estimation of non-Gaussian, nonlinear
processes

= Sampling Importance Resampling (SIR)
principle
= Draw the new generation of particles
= Assign an importance weight to each particle

= Resample

= Typical application scenarios are tracking,

localization, ... o



Localization vs. SLAM

A particle filter can be used to solve both
problems

Localization: state space <X, y, 6>
SLAM: state space <X, Yy, 6, map>
= for landmark maps = <l |,, ..., |.,>

= for grid maps = <Cj4, C15, «--s C1ps Coq, >

.ors Chm

Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!
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Dependencies

* |s there a dependency between certain
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?
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Dependencies

* |s there a dependency between certain
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?

= |In the SLAM context

= The map depends on the poses of the robot.

= We know how to build a map given the position
of the sensor is known.
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Factored Posterior (Landmarks)
poses map observations & movements
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Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(wlitallim | Zl:tvuOZt—].) —
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SLAM posterior T
Robot path posterior

landmark positions
Does this help to solve the problem?

Factorization first introduced by Murphy in 1999 15



Rao-Blackwellization

= Factorization to exploit dependencies
between variables:

p(a,b) = p(a)-p(b|a)

= If p(b|a) can be computed in closed form,
represent only p(a) with samples
and compute p(b | a) for every sample

= |t comes from the Rao-Blackwell theorem



Revisit the Graphical Model
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Courtesy: Thrun, Burgard, Fox




Revisit the Graphical Model
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Landmarks are Conditionally
Independent Given the Poses
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Landmark variables are all disconnected
(i.e. iIndependent) given the robot’s path




Factored Posterior
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Rao-Blackwellization for SLAM
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= Given that the second term can be computed
efficiently, particle filtering becomes possible!
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FastSLAM

= Rao-Blackwellized particle filtering based on
landmarks [Montemerlo et al., 2002]

= Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

= Each particle therefore has to maintain M EKFs

Part'CIe - Landmark 1 § Landmark 2 Landmark M

Part'CIe - Landmark 1 § Landmark 2 Landmark M

Pa”'c'e - Landmark 1 | Landmark 2 @ Landmark M




FastSLAM — Action Update
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FastSLAM — Sensor Update
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FastSLAM — Sensor Update

Particle #1

Particle #2
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Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM — Sensor Update

Particle #1

Particle #2

Particle #3
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Update map
of particle #1

Update map
of particle #2

Update map
of particle #3
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FastSLAM - Video
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FastSLAM Complexity — Naive

= Update robot particles O(N)
based on the control

= Incorporate an observation O(N)
Into the Kalman filters
(given the data association)

= Resample particle set O(NM)

N = Number of particles O(NM)

M = Number of map features



A Better Data Structure for
FastSLAM
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A Better Data Structure for
FastSLAM

j<47?

new particle

old particle

j=17? j=37?
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FastSLAM Complexity

= Update robot particles
based on the control O(N)

= |[ncorporate an observation
Into the Kalman filters O(N log M)
(given the data association)

= Resample particle set O(N log M)

N = Number of particles

M = Number of map features O(N log M)




Data Associlation Problem

= Which observation belongs to which

landmark?
X%\sz%\
| ,Q\Z%
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= A robust SLAM solution must consider
possible data associations

= Potential data associations depend also
on the pose of the robot
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Multi-Hypothesis Data Association

= Data association I1s done
on a per-particle basis e

» Robot pose error is o L\
factored out of data | -,
association decisions '1(:;
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Per-Particle Data Associlation

(>

Was the observation

&

N

generated by the red

S

7

or the brown landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick a random association weighted by

the observation likelihoods

= |f the probability is too low, generate a new

landmark
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Results — Victoria Park

= 4 km traverse

= <5 mRMS
position error

= 100 particles
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Dataset courtesy of UnlverS|ty of Sydney 38




Dataset courtesy of University of Sydney 39



Results — Data Association

Robot RMS Position Error (m)
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Comparison of FastSLAM and EKF Given Motion Ambiguity
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FastSLAM Summary

FastSLAM factors the SLAM posterior into
low-dimensional estimation problems
= Scales to problems with over 1 million features

FastSLAM factors robot pose uncertainty
out of the data association problem

= Robust to significant ambiguity in data
association

= Allows data association decisions to be delayed
until unambiguous evidence is collected

Advantages compared to the classical EKF

approach (especially with non-linearities)

Complexity of O(N log M)
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