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The SLAM Problem

= SLAM stands for simultaneous localization
and mapping

= The task of building a map while estimating
the pose of the robot relative to this map

= Why is SLAM hard?
Chicken-or-egg problem:

= A map is needed to localize the robot
= A pose estimate is needed to build a map



The SLAM Problem

A robot moving through an unknown, static environment

Given: "

= The robot’s
controls

= Observations of
nearby features e

Estimate:

= Map of features
= Path of the robot




Map Representations

Typical models are:

. Feature maps

= Grid maps (occupancy or reflection
probability maps)




Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!

Robot path error correlates errors in the map 5



Why is SLAM a Hard Problem?
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= In the real world, the mapping between
observations and landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences

= Pose error correlates data associations



Data Association Problem
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= A data association is an assignment of
observations to landmarks

= In general there are more than ()
(n observations, m landmarks) possible
associations

= Also called “assignment problem”
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Particle Filters

Represent belief by random samples

= Estimation of non-Gaussian, nonlinear
processes

Sampling Importance Resampling (SIR)
principle

= Draw the new generation of particles

= Assign an importance weight to each particle

= Resample

= Typical application scenarios are tracking,

localization, ... 0



Localization vs. SLAM

= A particle filter can be used to solve both
problems

= | ocalization: state space <x, y, 6>
= SLAM: state space <x, y, 6, map>
= for landmark maps = </,, /5, ..., |.,>
= for grid maps = <Cyy4, Cy5, .., Cipy Co1y +vry Com™>

= Problem: The number of particles needed to
represent a posterior grows exponentially with
the dimension of the state space!
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Dependencies

= |s there a dependency between certain
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?
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Dependencies

= |s there a dependency between certain
dimensions of the state space?

= If so, can we use the dependency to solve
the problem more efficiently?

» In the SLAM context

= The map depends on the poses of the robot.

= We know how to build a map given the position
of the sensor is known.
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Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(wl:tall:m | Zl:tauo:t—l) —
p(x1:¢ ‘ 214, U0:t—1) - P(L1:m | T1:¢, 21:¢)

Factorization first introduced by Murphy in 1999 14



Factored Posterior (Landmarks)
poses map observations & movements

Vo

p(a”fl:tall:m | Zl:tauo:t—l) —
] p(x1:¢ ‘ 214, U0:t—1) - P(L1:m ‘ T1:¢, 21:¢)

SLAM posterior ‘
Robot path posterior

landmark positions
Does this help to solve the problem?

Factorization first introduced by Murphy in 1999 15



Rao-Blackwellization

= Factorization to exploit dependencies
between variables:

p(a,b) = p(a)-p(b|a)

= If p(b|a) can be computed in closed form,
represent only p(a) with samples
and compute p(b | a) for every sample

= It comes from the Rao-Blackwell theorem



Revisit the Graphical Model
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Courtesy: Thrun, Burgard, Fox




Revisit the Graphical Model
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Landmarks are Conditionally
Independent Given the Poses
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Landmark variables are all disconnected
(i.e. independent) given the robot’s path




Factored Posterior
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Rao-Blackwellization for SLAM

p(fffl:tallzm | Zl:tauo:t—l) —
M
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= Given that the second term can be computed
efficiently, particle filtering becomes possible!
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FastSLAM

= Rao-Blackwellized particle filtering based on
landmarks  [Montemerlo et al., 2002]

= Each landmark is represented by a 2x2
Extended Kalman Filter (EKF)

= Each particle therefore has to maintain M EKFs

Pa”'c'e - Landmark 1 | Landmark 2

Pa”'c'e - Landmark 1 | Landmark 2 [l Landmark M

Landmark M

Par“c'e - Landmark 1 | Landmark 2 8 Landmark M




FastSLAM - Action Update
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FastSLAM - Sensor Update
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FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3
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Weight = 0.8

Weight =0.4

Weight = 0.1
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FastSLAM - Sensor Update

Particle #1

Particle #2

Particle #3

-

Update map
of particle #1

Update map
of particle #2

Update map
of particle #3
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FastSLAM - Video
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FastSLAM Complexity — Naive

= Update robot particles O(N)
based on the control

= Incorporate an observation O(N)
into the Kalman filters
(given the data association)

= Resample particle set O(NM)

N = Number of particles O(NM)

M = Number of map features



A Better Data Structure for
FastSLAM
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A Better Data Structure for
FastSLAM

j=4?

new particle

old particle
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FastSLAM Complexity

= Update robot particles
based on the control O(N)

= Incorporate an observation
into the Kalman filters O(N log M)
(given the data association)

= Resample particle set O(N log M)

N = Number of particles
M = Number of map features O(N log M)




Data Association Problem

= Which observation belongs to which
landmark?
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= A robust SLAM solution must consider
possible data associations

= Potential data associations depend also
on the pose of the robot
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Multi-Hypothesis Data Association

= Data association is done
on a per-particle basis Vo

= Robot pose error is o L\
factored out of data . -,
association decisions x.@
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Per-Particle Data Association

(>

Was the observation

<

N

generated by the red

N\

7

or the brown landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

= Two options for per-particle data association
= Pick the most probable match
= Pick a random association weighted by

the observation likelihoods

= If the probability is too low, generate a new

landmark
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Results — Victoria Park

4 km traverse

= < 5 mRMS
position error

= 100 particles

Blue = GPS
= FastSLAM

Dataset courtesy of University of Sydney 38



Dataset courtesy of University of Sydney 39



Results — Data Association

Robot RMS Position Error (m)
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Comparison of FastSLAM and EKF Given Motion Ambiguity

| |
- FasiSLAM
B - - EKF |
- -
-
-
-
-
-
-
-
-
-
-
-
’1
,
Fa
| rg
Fa
F
r
Fd
4
Fa
Fa
,
F
ra
T T
E I T 1
| | | | | | | | | | |
0 002 004 006 008 0.1 012 014 016 018 0.2

Error Added to Rotational Velocity (std.)
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FastSLAM Summary

FastSLAM factors the SLAM posterior into
low-dimensional estimation problems
= Scales to problems with over 1 million features

FastSLAM factors robot pose uncertainty
out of the data association problem

= Robust to significant ambiguity in data

association

= Allows data association decisions to be delayed

until unambiguous evidence is co

Advantages compared to the c
approach (especially with non-

Complexity of O(N log M)

lected

assical EKF
inearities)

41



