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Vectors

= Arrays of numbers

= Vectors represent a point in a n dimensional
space

aq a2

(Cl]_) ( aq ) CL:2 a
an :

an ai



Vectors: Scalar Product

= Scalar-Vector Product ka
= Changes the length of the vector, but not

its direction
/ka
an

ai




Vectors: Sum

= Sum of vectors (is commutative)

a1 by b1\ a1
a.n b.n b.n / CL‘n

= Can be visualized as “chaining” the vectors.




Vectors: Dot Product

= Inner product of vectors (is a scalar)
aob=b-a=Zaibi
)

= If one of the two vectors, e.g.a, has|la|| =1
the inner producta - breturns the length of
the projection of b along the direction of a

= Ifa-b =0, the
two vectors are
orthogonal




Vectors: Linear (In)Dependence
= A vector b is linearly dependent from
{aj,a2,...,an} if b= > kia

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {k;} such that b =) k;a;
then b is indepen;lent from {a;} i
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Vectors: Linear (In)Dependence
= A vector b is linearly dependent from
{aj,a2,...,an} if b= > kia

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {k;} such that b=) ka,
then b is independent from {a;} ¢
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Matrices

= A matrix is written as a table of values

(a11 a1 - aim )
a a ¢ o o a
Az | e e |y,
' () 'T‘I
\anl apo - anm) rows columns

= 1st index refers to the row

= 2nd jndex refers to the column

= Note: a d-dimensional vector is equivalent
to a dx1 matrix



Matrices as Collections of
Vectors

= Column vectors

(a*l Ay a*m)
([a11] [@a12] -+ |a1m) )
A = || 921]|a22] - |azm

\a’nl Anp2| " anm)




Matrices as Collections of
Vectors

= Row vectors

T
(la11 a12 - aim =/a%*\
A — | 1321 @22 -+ aom | A2«

\[@n1 an2 - - anmi/ ’\azn




Important Matrices Operations

= Multiplication by a scalar

= Sum (commutative, associative)
= Multiplication by a vector

= Product (not commutative)

= ITnversion (square, full rank)

= Transposition



Scalar Multiplication & Sum

= In the scalar multiplication, every element
of the vector or matrix is multiplied with the

SCalar

= The sum of two vectors is a vector
consisting of the pair-wise sums of the
individual entries

= The sum of two matrices is a matrix
consisting of the pair-wise sums of the
individual entries




Matrix Vector Product

= The jith component of Ab is the dot

product a’, - b

= The vector Ab is linearly dependent from
the column vectors {a,;} with coefficients {b;}

/a,{*\

T
Ab = AD,

\ 2

ag-b

X

\a%;:-b/

row vectors

:Ek:a

*k'bkz

|

column vectors



Matrix Vector Product

= If the column vectors of A represent a
reference system, the product Ab
computes the global transformation of the
vector b according to {a,;}

column vectors

b:za%rl
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Matrix Matrix Product

= Can be defined through
= the dot product of row and column vectors

= the linear combination of the columns of A
scaled by the coefficients of the columns of B

C = AB

T T T
( a%* by a%* bys - a%* D \
— ADy b1 ADy b.o - A0y bim
\ ag* - by1 ag* byo -+ ag* - bam )

(Ab,; Aby ...Ab,, )

column vectors



Matrix Matrix Product

= If we consider the second interpretation,
we see that the columns of C are the
“global transformations” of the columns
of B through A

= All the interpretations made for the matrix
vector product hold

AB
(Ab,; Ab,o ... Abuny )

Ab,, ]

C

Cxq

column vectors



Linear Systems (1)

Ax =Db

Interpretations:
= A set of linear equations

= A way to find the coordinates x in the

reference system of A such that b is the
result of the transformation of Ax

= Solvable by Gaussian elimination



Linear Systems (2)

Ax =Db

Notes:

= Many efficient solvers exit, e.g., conjugate
gradients, sparse Cholesky decomposition

= One can obtain a reduced system (A’, b’) by
considering the matrix (A, b) and suppressing all
the rows which are linearly dependent

= Let A'X=b" the reduced system with A':n'xm and
b':n'x1 and rank A' = min(n’'m) ows”7 ™ columns

= The system might be either over-constrained
(n’>m) or under-constrained (n’<m)



Over-Constrained Systems

= "More (indep) equations than variables”

= An over-constrained system does not
admit an exact solution

= However, if rank A’ = cols(A) one often
computes a minimum norm solution

x = argmin ||A'x — b/||
X

Note: rank = Maximum number of linearly independent rows/columns



Under-Constrained Systems

= "More variables than (indep) equations”

= The system is under-constrained if the
number of linearly independent rows of A’
is smaller than the dimension of b’

= An under-constrained system admits infinite
solutions

= The degree of these infinite solutions is
cols(A’) - rows(A’)



Inverse
AB =1

= If A is a square matrix of full rank, then
there is a unique matrix B=A"1 such that
AB=I holds

= The " row of A is and the jt" column of A-1
are:
= orthogonal (if i =j)
= or their dot product is 1 (if i = j)



Matrix Inversion
AB =1

= The it" column of A1 can be found by
solving the following linear system:

This is the it" column
of the identity matrix

-1
Aa 7 — Lxq



Rank

= Maximum number of linearly independent rows (columns)
= Dimension of the image of the transformation f(x) = Ax

= When A4 is m xn we have
= rank(A) > 0 and the equality holds iff A is the null matrix
rank(A) < min(m,n)
f(x) is injective iff rank(A) =n
f(x) is surjective iff rank(A) =m
if m =mn, f(x)is bijective and A is invertible iff rank(A) =n

= Computation of the rank is done by
= Gaussian elimination on the matrix
= Counting the number of non-zero rows



Determinant (det)

= Only defined for square matrices
= The inverse of A exists if and only if det(A) # 0
= For 2 x 2 matrices:

Let A = [aij] and ’A‘ = det(A) , then

ailx; ai2
az1 Q22

= ai1 - a2 —ai2 - a21

= For3 x 3 matrices the Sarrus rule holds:

i1, Qi2. @13 |
a1 @22  G23 | = Q11022033 + Q12023031 1 A13A21a32

—011023032 — 412021033 — 413022011



Determinant

= For general n x n matrices?

Let A;; be the submatrix obtained from A
by deleting the i-th row and the j-th column

1 2 5 0
1 5 0
2 3 4 -1
58 0 0 - An- (2)_42 _01
0 4 -2 0 |

Rewrite determinant for 3 x 3 matrices:

3%3
det(A°"°) = a11022033 + a12a23a31 + A13021032

—a11023032 — Q12021033 — 013022011
= all- det(All) — a9 - det(Alg) + ai3 - det(Alg)



Determinant

= For general n x n matrices?

det(A) = andet(A11) — aradet(Ars) + ... + (=1) a1, det (A1)
p— Z(—1)1+ja1jdet(A1j)
j=1

Let C,;; = (—1)""det(A;;) be the (ij)-cofactor, then

det(A) = a11C11 +0a12C12+ ... +a1,C1p,

n

= > a1;Cy

j=1

This is called the cofactor expansion across the first row



Determinant

Problem: Take a 25 x 25 matrix (which is considered small).
The cofactor expansion method requires n! multiplications.
For n = 25, thisis 1.5 x 107”25 multiplications for which a
today supercomputer would take 500,000 years.

There are much faster methods, namely using Gauss
elimination to bring the matrix into triangular form.

[ dy x % x|
. 0 d2 * * n
A=10 9 dy  * det(A) =[[;_ di
| 0 0 0 dy |

Because for triangular matrices the determinant is the
product of diagonal elements



Determinant: Properties

Row operations (A is still a n x n square matrix)

= If B results from A by interchanging two rows,
then det(B) = —det(A)

= If B results from A by multiplying one row with a number ¢,
then det(B) = ¢ - det(A)

= If B results from A by adding a multiple of one row to another
row, then det(B) = det(A)

Transpose: det(A”) = det(A)

Multiplication: det(A - B) = det(A) - det(B)

Does not apply to addition! det(A + B) # det(A) + det(B)



Determinant: Applications

= Compute Eigenvalues:
Solve the characteristic polynomial det(A —X-1I) =0

= Area and Volume: area = |det(A)]

ri+r3

r1+r2+r3
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Orthonormal Matrix

= A matrix @ is orthonormal iff its column (row)
vectors represent an orthonormal basis

T f1if =4 .
q*i'q*ﬂ'_{o RSN B

= As linear transformation, it is norm preserving

= Some properties:
= The transpose is the inverse QQY =Q'Q =1
= Determinant has unity norm (4 1)

1 =det(l) = det(QTQ) — det(@)det(QT) = det(@)2



Rotation Matrix

= A Rotation matrix is an orthonormal matrix with det =+1
cos(f) —sin(f) ]

sin(f)  cos(6)

= 3D Rotations along the main axes

1 0 0

0 cos(f) —sin(6)
0 sin(f) cos(0)

= IMPORTANT: Rotations are not commutative

_ _[om7 0 —0707 ] _ T [ 1414
Ry(5)-Ry(=)=| =05 0707 —05 |, Ro(=)Ry(>)| 2 |=]| 0.586
4 4 4 TR -

= 2D Rotations R(0) = [

0 1 0
sin(f) 0 cos(0)

R.(0) = R,(0) =

{cos(@) 0 sin(@)}

05 0707 05 | | 3414
- - [ 0.707 —0.5 —0.5 ] - - 1] [ —1.793 ]

0707 05 0.5 3 3.207




Matrices to Represent Affine
Transformations

= A general and easy way to describe a 3D
transformation is via matrices

Translation Vector

= (B = () e (1)

Rotation Matrix

= Takes naturally into account the non-
commutativity of the transformations

= Homogeneous coordinates



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

p



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

O Bp gives the pose of the
object wrt the robot
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Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the
world]

= Where is the object in the global frame?

Bp gives the pose of the
object wrt the robot

Q. o

Q.

ABp gives the pose of the
object wrt the world




Positive Definite Matrix

= The analogous of positive number

» Definition M > Qiff 2! Mz > OVz # O

= Example

110 1 O z1 | _ 2, 2
| Ml_lo]_],{z:]_ 22}[01][22]_21+22>0



Positive Definite Matrix

= Properties
= Invertible, with positive definite inverse

= All real eigenvalues > 0
= Trace is > 0
= Cholesky decomposition A4 = [LI,1



Jacobian Matrix

= [tis a non-square matrix n xm in general

= Given a vector-valued function

[ f1(x) |
foo = | 29

i fm.(X) i

= Then, the Jacobian matrix is defined as

[ Of1 9N of1
drq1 Oz " Oxp
dfz 9[> 0 f2

Fy = | 921 Jzp "°° OJumy
Ofm 9Ofm 0 fm
| Oxrp Ozp "7 Oxp




Jacobian Matrix

= Jt is the orientation of the tangent
plane to the vector-valued function at a
given point

L T
0.2 T e 4 )
““J‘La.“s{' -t

= Generalizes the gradient of a scalar
valued function



Further Reading

= A "quick and dirty” guide to matrices is the
Matrix Cookbook available at:

http://matrixcookbook.com




