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What is SLAM? 

§  Estimate the pose of a robot and the map of 
the environment at the same time 

§  SLAM is hard, because 
§  a map is needed for localization and  
§  a good pose estimate is needed for mapping 

 
§  Localization: inferring location given a 

map  
§  Mapping: inferring a map given locations 
§  SLAM: learning a map and locating the 

robot simultaneously 

 



The SLAM Problem 

§  SLAM is a chicken-or-egg problem: 
→  a map is needed for localization and  
→  a pose estimate is needed for mapping 
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SLAM Applications 

§  SLAM is central to a range of indoor, 
outdoor, in-air and underwater applications 
for both manned and autonomous vehicles. 

Examples: 
§  At home: vacuum cleaner, lawn mower 
§  Air: surveillance with unmanned air vehicles 
§  Underwater: reef monitoring 
§  Underground: exploration of mines 
§  Space: terrain mapping for localization 
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SLAM Applications 
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Indoors 

Space 

Undersea 

Underground 



Map Representations 

Examples: Subway map, city map, 
landmark-based map 
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Maps are topological and/or metric 
models of the environment 



Map Representations in Robotics 
§  Grid maps or scans, 2d, 3d 

  
  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; 
Haehnel, 01; Grisetti et al., 05; …] 

 

§  Landmark-based 
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 



The SLAM Problem 

§  SLAM is considered a fundamental 
problems for robots to become truly 
autonomous 

§  Large variety of different SLAM 
approaches have been developed 

§  The majority uses probabilistic 
concepts 

§  History of SLAM dates back to the 
mid-eighties 
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Feature-Based SLAM  
 Given: 
§  The robot’s controls 

§  Relative observations 
 

 Wanted: 
§  Map of features 

§  Path of the robot 
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Feature-Based SLAM 

§  Absolute 
robot poses 

§  Absolute 
landmark 
positions 

§  But only 
relative 
measurements 
of landmarks 
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Why is SLAM a hard problem? 
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1. Robot path and map are both unknown  

2. Errors in map and pose estimates correlated 



Why is SLAM a hard problem? 

§  The mapping between observations and 
landmarks is unknown 

§  Picking wrong data associations can have 
catastrophic consequences (divergence) 
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Robot pose 
uncertainty 



SLAM: Simultaneous 
Localization And Mapping 
§  Full SLAM: 

§  Online SLAM: 
 

§  Integrations (marginalization) typically 
done recursively, one at a time 
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p(x0:t ,m | z1:t ,u1:t )

  

€ 

p(xt ,m | z1:t ,u1:t ) = … p(x1:t ,m | z1:t ,u1:t ) dx1∫∫∫ dx2...dxt−1

Estimates most recent pose and map! 

Estimates entire path and map! 



Graphical Model of Full SLAM  
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Graphical Model of Online SLAM  
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Motion and Observation Model 
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"Motion model" 

"Observation model" 



Remember the KF Algorithm  
1.   Algorithm Kalman_filter(µt-1, Σt-1, ut, zt): 

2.   Prediction: 
3.         
4.     

 
5.   Correction: 
6.         
7.    
8.    

9.   Return µt, Σt       

17 

ttttt uBA += −1µµ

t
T
tttt RAA +Σ=Σ −1

1)( −+ΣΣ= t
T
ttt

T
ttt QCCCK

)( tttttt CzK µµµ −+=

tttt CKI Σ−=Σ )(



EKF SLAM: State representation 
§  Localization 

 3x1 pose vector 
 3x3 cov. matrix 

 
§  SLAM 

 Landmarks simply extend the state.  
 Growing state vector and covariance matrix! 

 

18 



  

€ 

Bel(xt ,mt ) =

x
y
θ

l1
l2

lN

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( ( 

  ,   

σ x
2 σ xy σ xθ σ xl1

σ xl2
 σ xlN

σ xy σ y
2 σ yθ σ yl1

σ yl2
 σ ylN

σ xθ σ yθ σθ
2 σθl1

σθl2
 σθlN

σ xl1
σ yl1

σθl1
σ l1

2 σ l1l2
 σ l1lN

σ xl2
σ yl2

σθl2
σ l1l2

σ l2
2  σ l2lN

      
σ xlN

σ ylN
σθlN

σ l1lN
σ l2lN

 σ lN
2

# 

$ 

% 
% 
% 
% 
% 
% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
( 
( 
( 
( 
( 

EKF SLAM: State representation 
§  Map with n landmarks: (3+2n)-dimensional 

Gaussian 

§  Can handle hundreds of dimensions 
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EKF SLAM: Building the Map 

Filter Cycle, Overview: 
 

1.  State prediction (odometry) 
2.  Measurement prediction 
3.  Observation 
4.  Data Association 
5.  Update 
6.  Integration of new landmarks 
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EKF SLAM: Building the Map 

§  State Prediction 
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Odometry: 

(skipping time index k) 

Robot-landmark cross-
covariance prediction: 



EKF SLAM: Building the Map 

§  Measurement Prediction 
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Global-to-local 
frame transform h 



EKF SLAM: Building the Map 

§  Observation 
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(x,y)-point landmarks 



Associates predicted 
measurements 
with observation 

EKF SLAM: Building the Map 

§  Data Association 
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? 



EKF SLAM: Building the Map 

§  Filter Update 
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The usual Kalman 
filter expressions  



EKF SLAM: Building the Map 

§  Integrating New Landmarks 
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State augmented by 

Cross-covariances: 



EKF SLAM 
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Map              Correlation matrix 



EKF SLAM 
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Map              Correlation matrix 



EKF SLAM 
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Map              Correlation matrix 



EKF SLAM: Correlations Matter 

§  What if we neglected cross-correlations? 
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EKF SLAM: Correlations Matter 

§  What if we neglected cross-correlations? 

§  Landmark and robot uncertainties would 
become overly optimistic 

§  Data association would fail 
§  Multiple map entries of the same landmark 
§  Inconsistent map 
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SLAM: Loop Closure 

§  Recognizing an already mapped area, 
typically after a long exploration path (the 
robot "closes a loop”) 

§  Structurally identical to data association, 
but 
§  high levels of ambiguity 
§  possibly useless validation gates 
§  environment symmetries 

§  Uncertainties collapse after a loop closure 
(whether the closure was correct or not) 
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SLAM: Loop Closure 

§  Before loop closure 
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SLAM: Loop Closure 

§  After loop closure 
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SLAM: Loop Closure 

§  By revisiting already mapped areas, 
uncertainties in robot and landmark 
estimates can be reduced 

§  This can be exploited when exploring an 
environment for the sake of better (e.g. 
more accurate) maps 

§  Exploration: the problem of where to 
acquire new information 

→  See separate chapter on exploration 
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KF-SLAM Properties  
(Linear Case) 
§  The determinant of any sub-matrix of the map 

covariance matrix decreases monotonically as 
successive observations are made 

40 [Dissanayake et al., 2001] 

§  When a new land-
mark is initialized, 
its uncertainty is 
maximal 

§  Landmark uncer-
tainty decreases 
monotonically 
with each new 
observation 



KF-SLAM Properties  
(Linear Case) 
§  In the limit, the landmark estimates 

become fully correlated 

41 [Dissanayake et al., 2001] 



KF-SLAM Properties  
(Linear Case) 
§  In the limit, the covariance associated with 

any single landmark location estimate is 
determined only by the initial covariance 
in the vehicle location estimate. 

42 [Dissanayake et al., 2001] 



EKF SLAM Example:  
Victoria Park Dataset 
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Victoria Park: Data Acquisition 

44 [courtesy by E. Nebot] 



Victoria Park: Estimated 
Trajectory 

45 [courtesy by E. Nebot] 



Victoria Park: Landmarks 

46 [courtesy by E. Nebot] 



EKF SLAM Example: Tennis 
Court 

47 [courtesy by J. Leonard] 



EKF SLAM Example: Tennis 
Court 
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odometry estimated trajectory 

[courtesy by John Leonard] 



EKF SLAM Example: Line 
Features 
§  KTH Bakery Data Set 

49 [Wulf et al., ICRA 04] 



EKF-SLAM: Complexity 

§  Cost per step: quadratic in n, the 
number of landmarks: O(n2) 

§  Total cost to build a map with n 
landmarks: O(n3) 

§  Memory consumption: O(n2) 
§  Problem: becomes computationally 

intractable for large maps! 
§  There exists variants to circumvent 

these problems 
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SLAM Techniques 

§  EKF SLAM 
§  FastSLAM 
§  Graph-based SLAM 
§  Topological SLAM 

(mainly place recognition) 
§  Scan Matching / Visual Odometry 

(only locally consistent maps) 
§  Approximations for SLAM: Local submaps, 

Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc. 

§  … 
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EKF-SLAM: Summary 

§  The first SLAM solution 
§  Convergence proof for linear Gaussian 

case 
§  Can diverge if nonlinearities are large 

(and the reality is nonlinear...) 
§  Can deal only with a single mode 
§  Successful in medium-scale scenes 
§  Approximations exists to reduce the 

computational complexity 
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