Introduction to Mobile Robotics

Bayes Filter – Particle Filter and Monte Carlo Localization

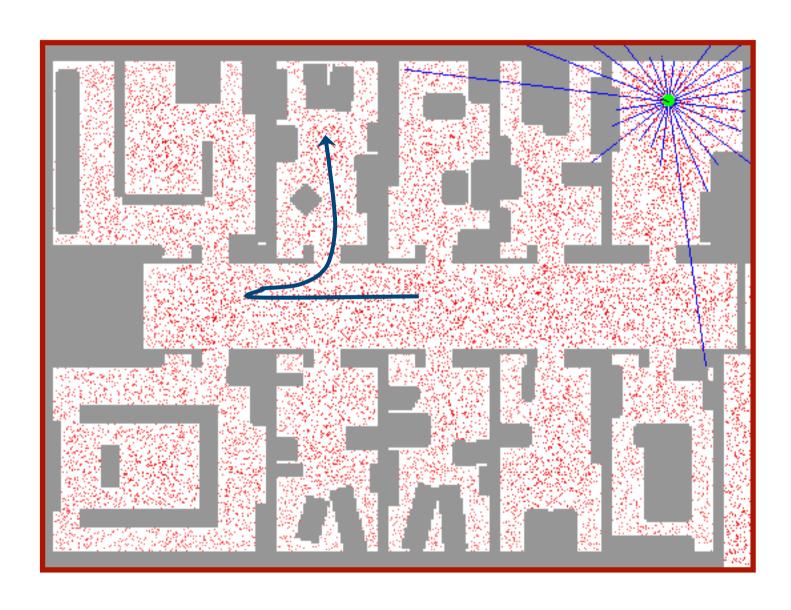
Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras

Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)



Mathematical Description

Set of weighted samples

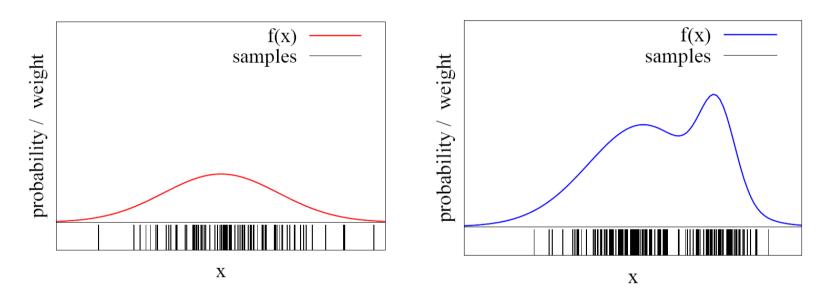
$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

Function Approximation

Particle sets can be used to approximate functions

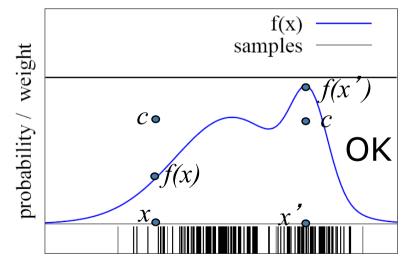


- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Rejection Sampling

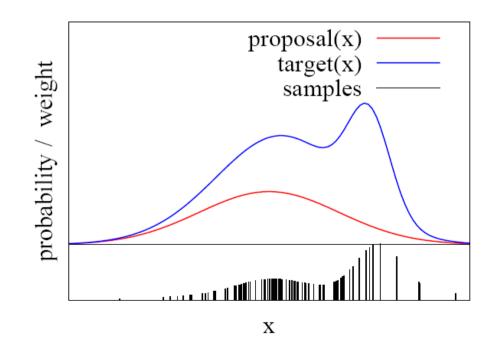
- Let us assume that f(x) < 1 for all x
- Sample x from a uniform distribution
- Sample *c* from [0,1]
- if f(x) > c

keep the sample otherwise reject the sample



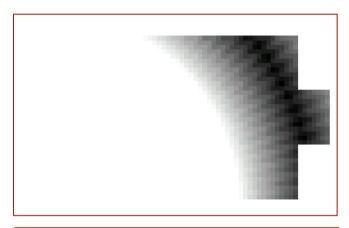
Importance Sampling Principle

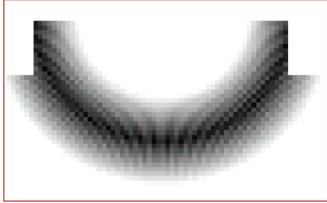
- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is often called target
- g is often called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$

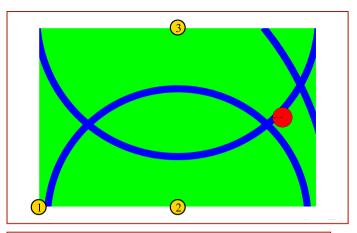


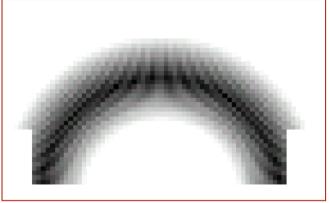
Importance Sampling with Resampling: Landmark Detection Example

Distributions



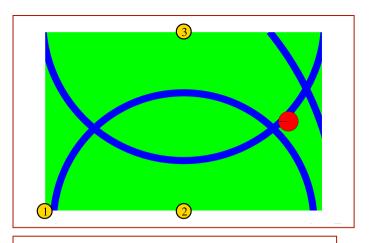




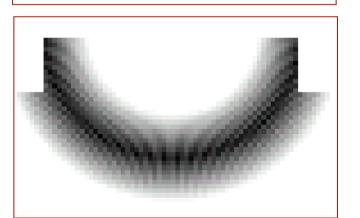


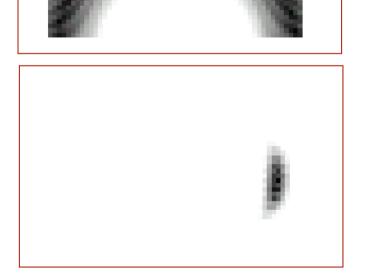


Distributions



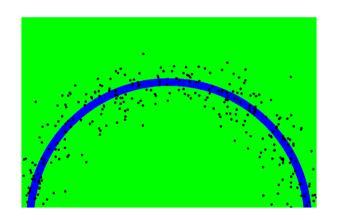
Wanted: samples distributed according to $p(x | z_1, z_2, z_3)$

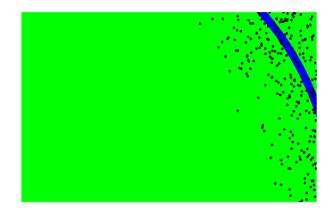


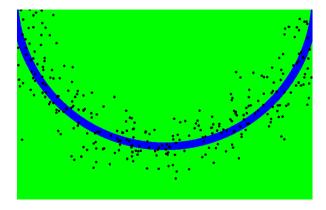


This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.







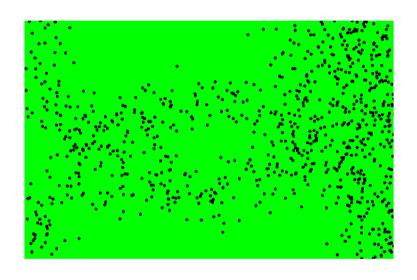
Importance Sampling

Target distribution
$$f: p(x | z_1, z_2, ..., z_n) = \frac{\prod_{k} p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

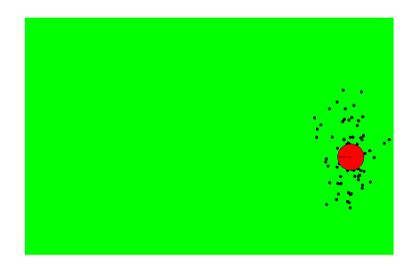
Sampling distribution
$$g: p(x | z_l) = \frac{p(z_l | x)p(x)}{p(z_l)}$$

Importance weights w:
$$\frac{f}{g} = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

Importance Sampling with Resampling

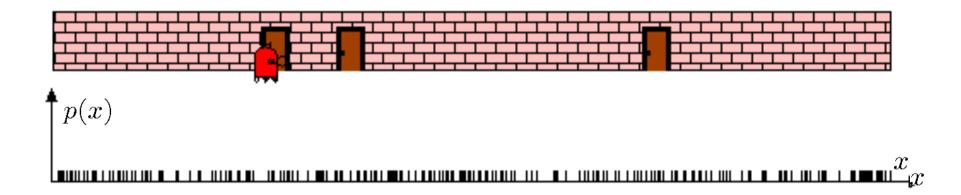


Weighted samples



After resampling

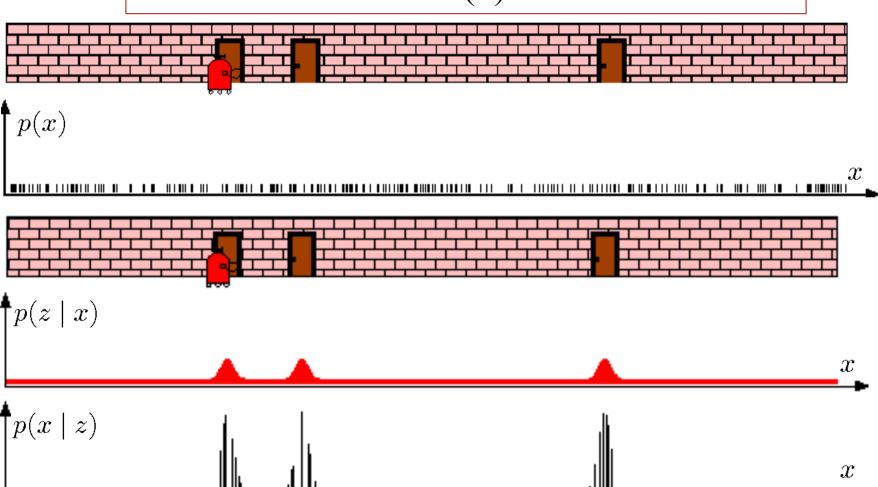
Particle Filters



Sensor Information: Importance Sampling

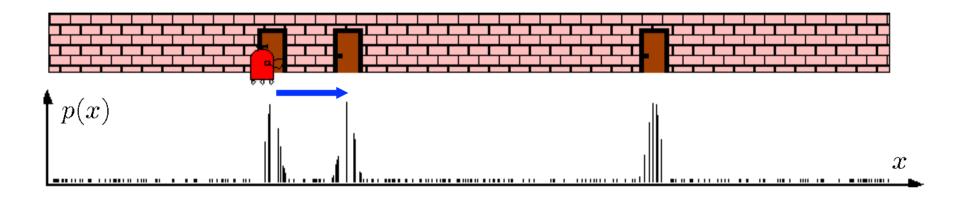
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

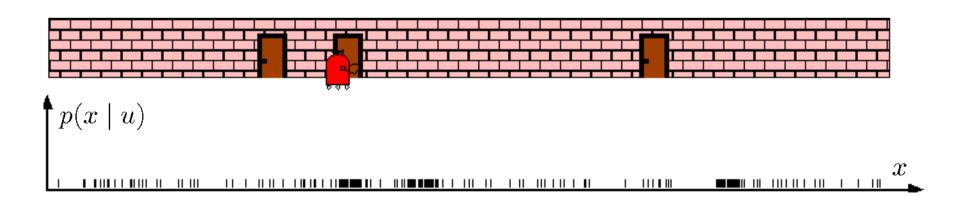
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

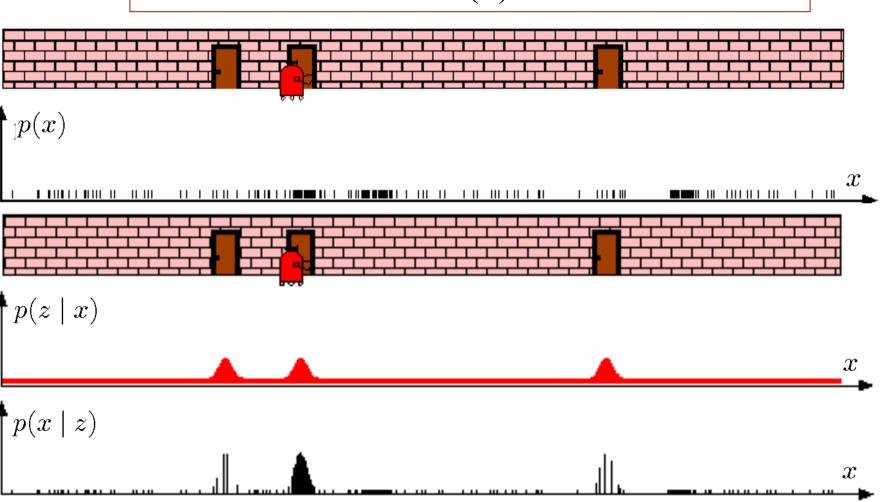




Sensor Information: Importance Sampling

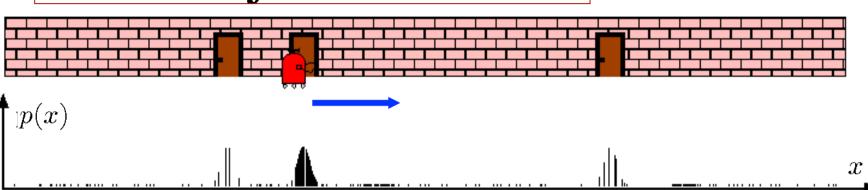
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

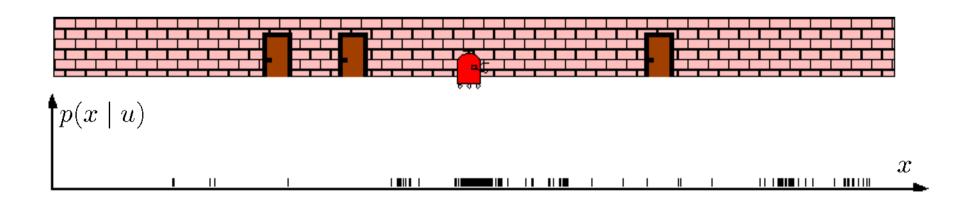
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$





Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , u_t , z_t):
- 2. $S_t = \emptyset$, $\eta = 0$
- 3. For i = 1,...,n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_t)$ using $x_{t-1}^{j(i)}$ and u_t
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

 $\eta = \eta + w_t^i$

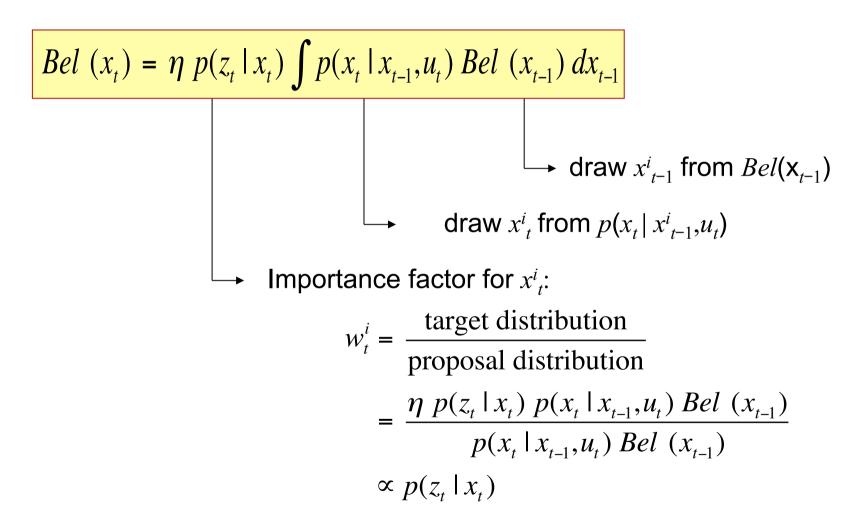
- Update normalization factor
- 8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. For i = 1,...,n
- $10. w_t^i = w_t^i / \eta$

Normalize weights

Particle Filter Algorithm



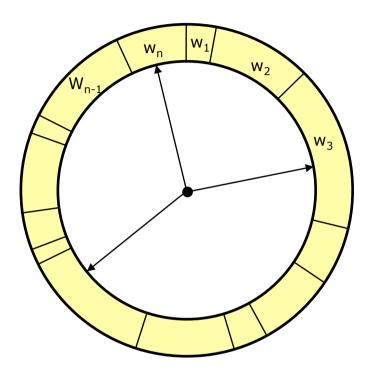
Resampling

• Given: Set S of weighted samples.

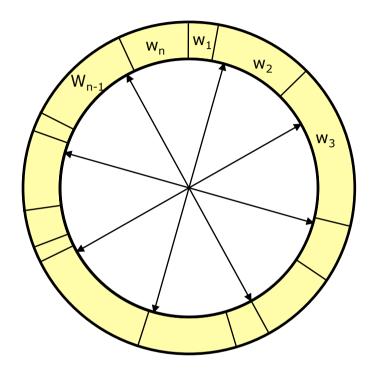
• Wanted : Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

1. Algorithm **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. For
$$i = 2...n$$
 Generate cdf

4.
$$c_i = c_{i-1} + w^i$$

5.
$$u_1 \sim U[0, n^{-1}], i = 1$$
 Initialize threshold

6. For
$$j = 1...n$$

7. While
$$(u_j > c_i)$$

7. While $(u_i > c_i)$ Skip until next threshold reached

8.
$$i = i + 1$$

8.
$$i = i + 1$$

9. $S' = S' \cup \{ < x^i, n^{-1} > \}$ *Insert*

10.
$$u_{j+1} = u_j + n^{-1}$$
 Increment threshold

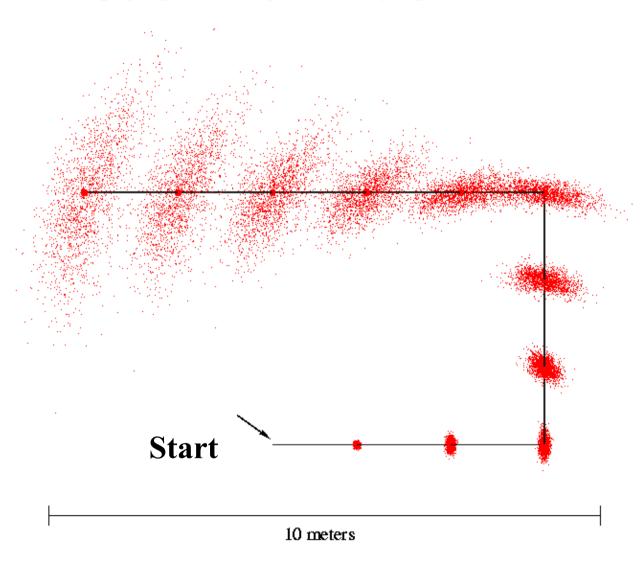
11. Return S'

Mobile Robot Localization

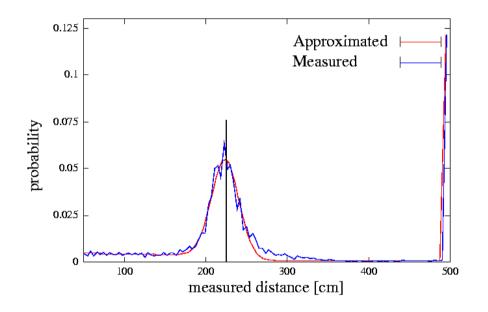
- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

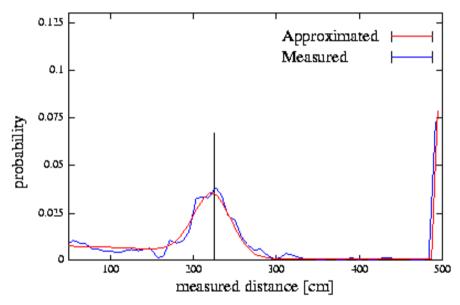
[For details, see PDF file on the lecture web page]

Motion Model Reminder



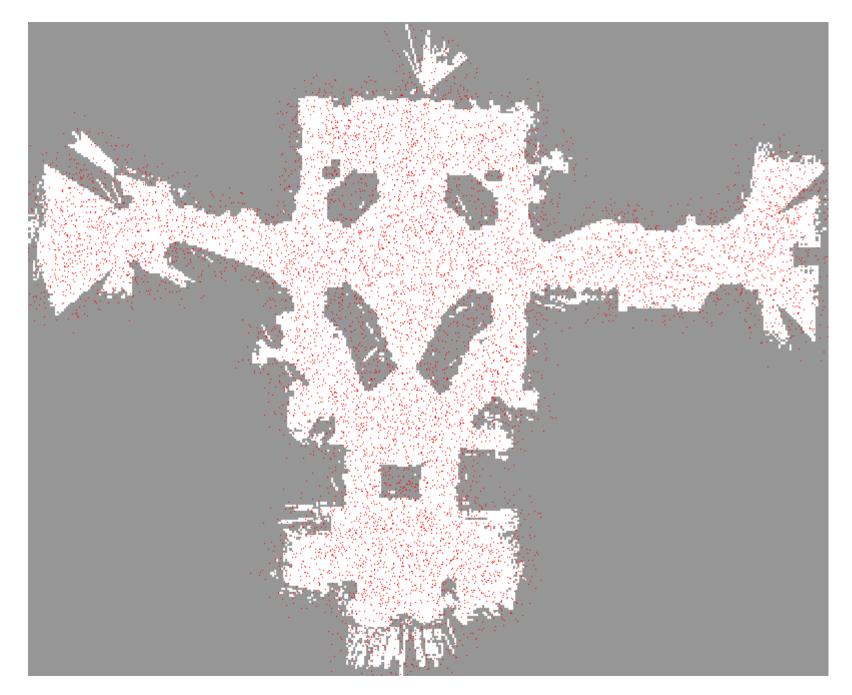
Proximity Sensor Model Reminder

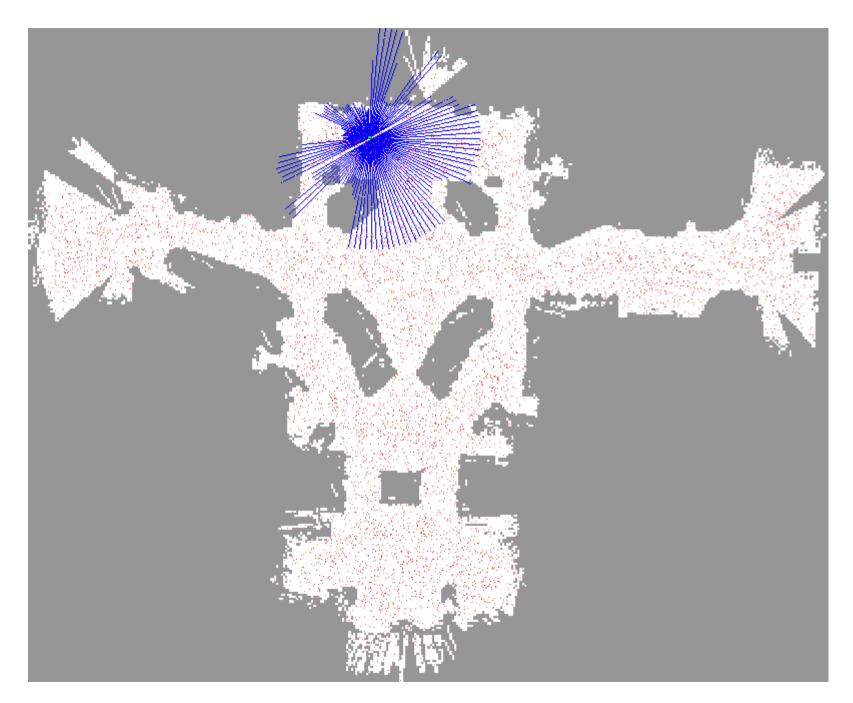


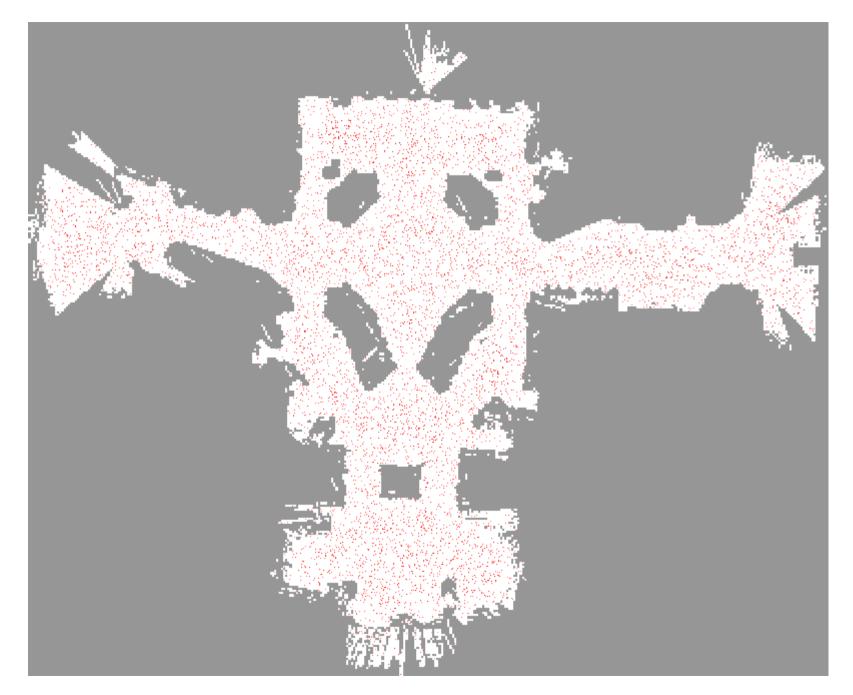


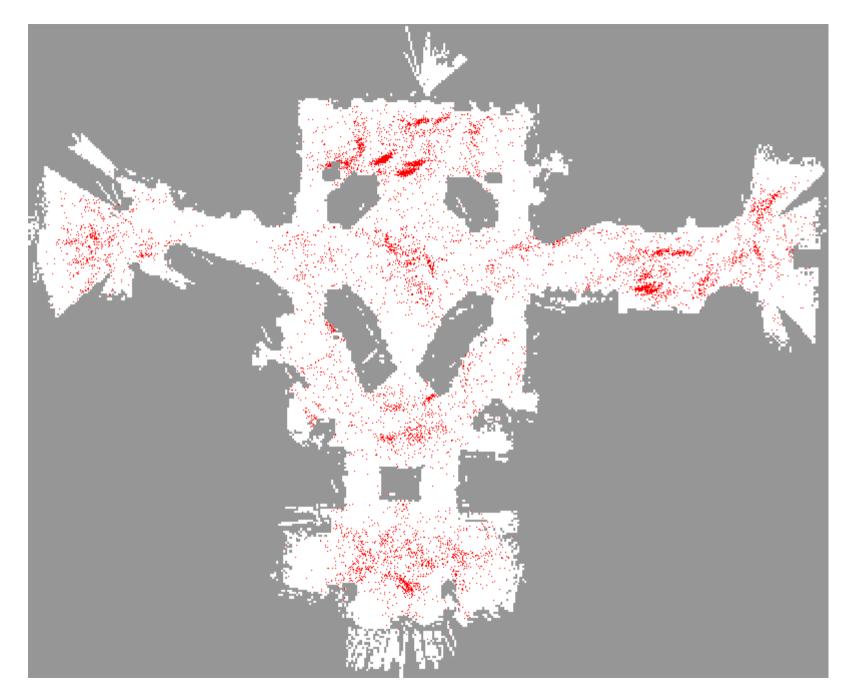
Laser sensor

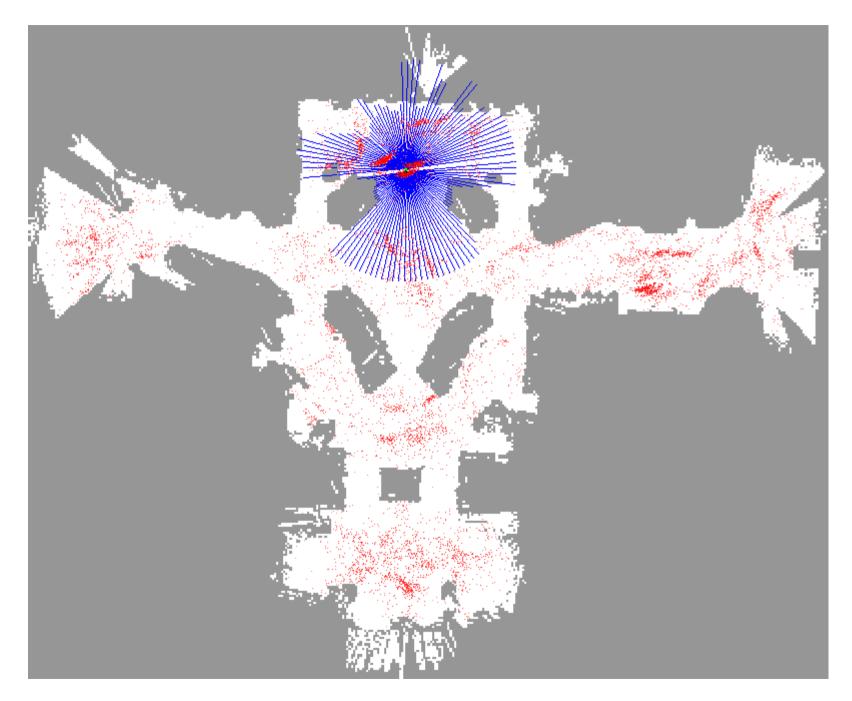
Sonar sensor

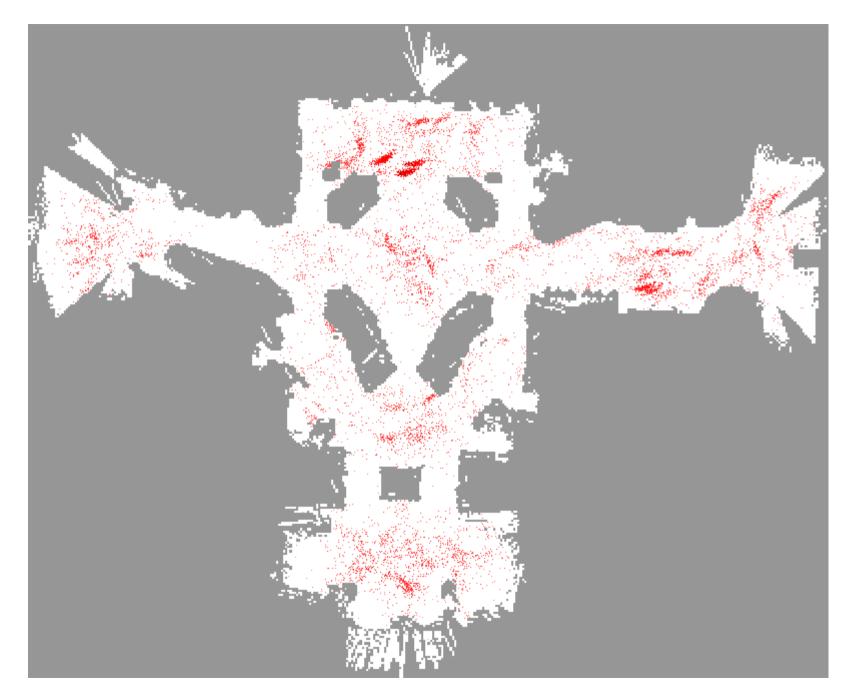


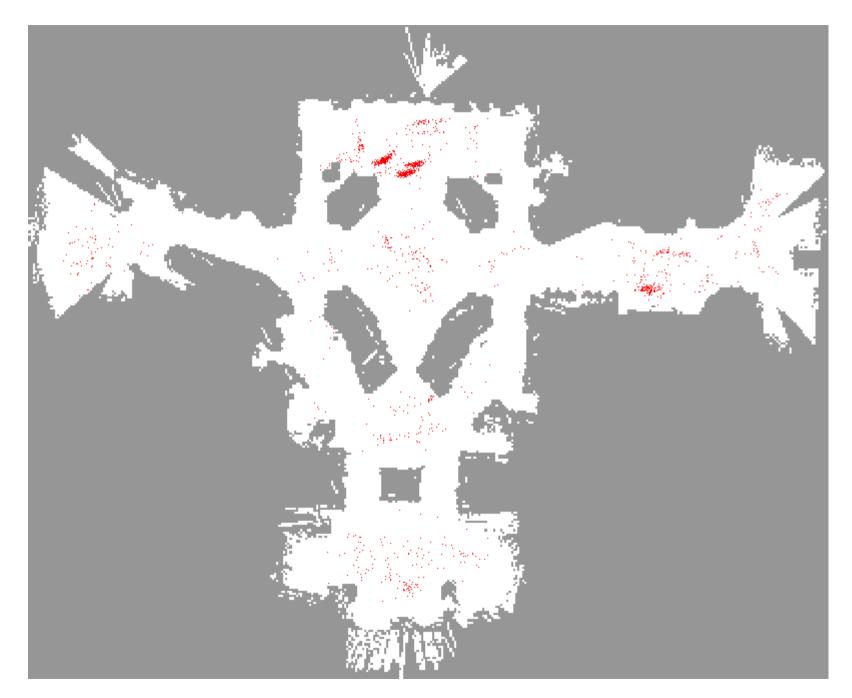




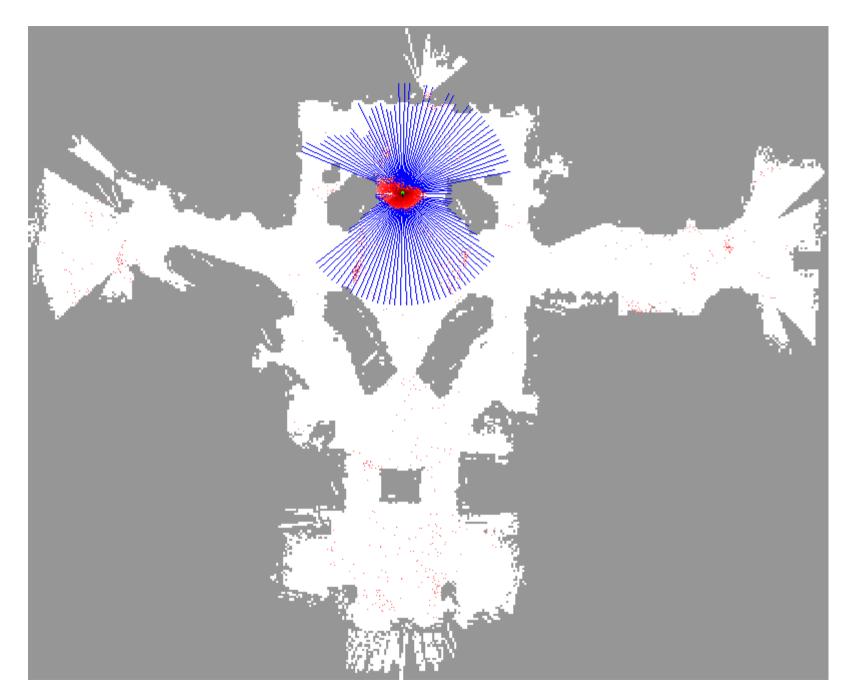


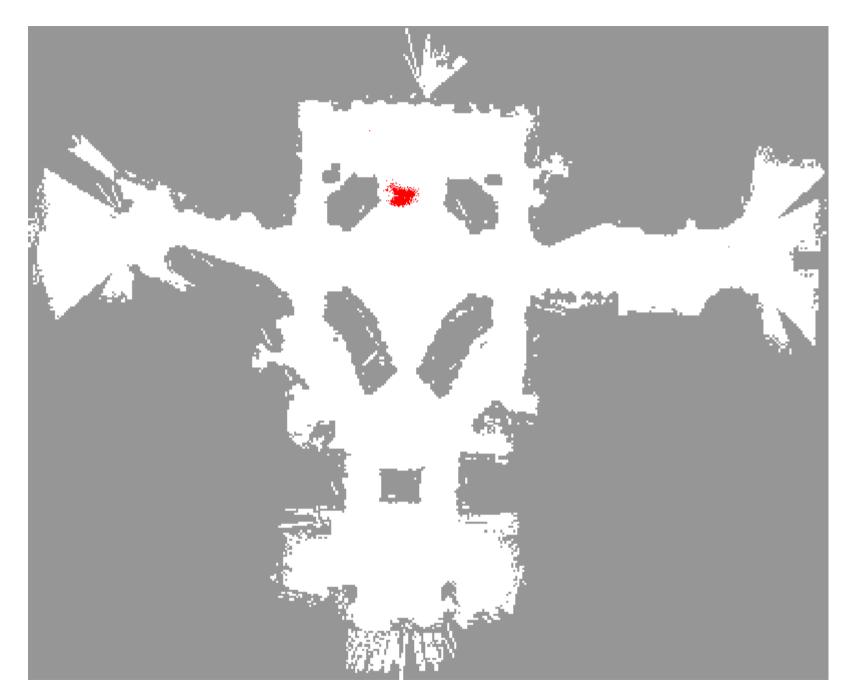


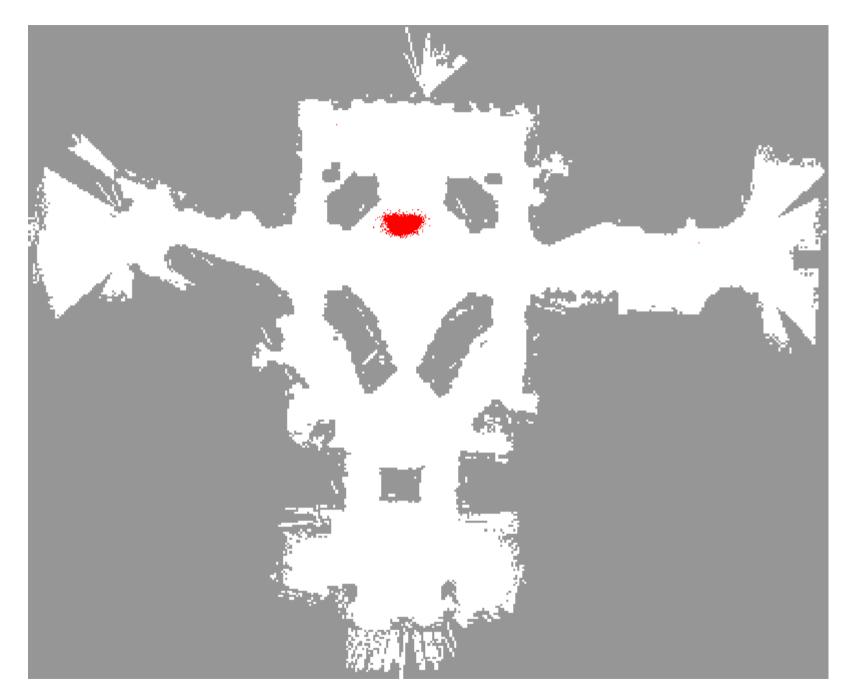


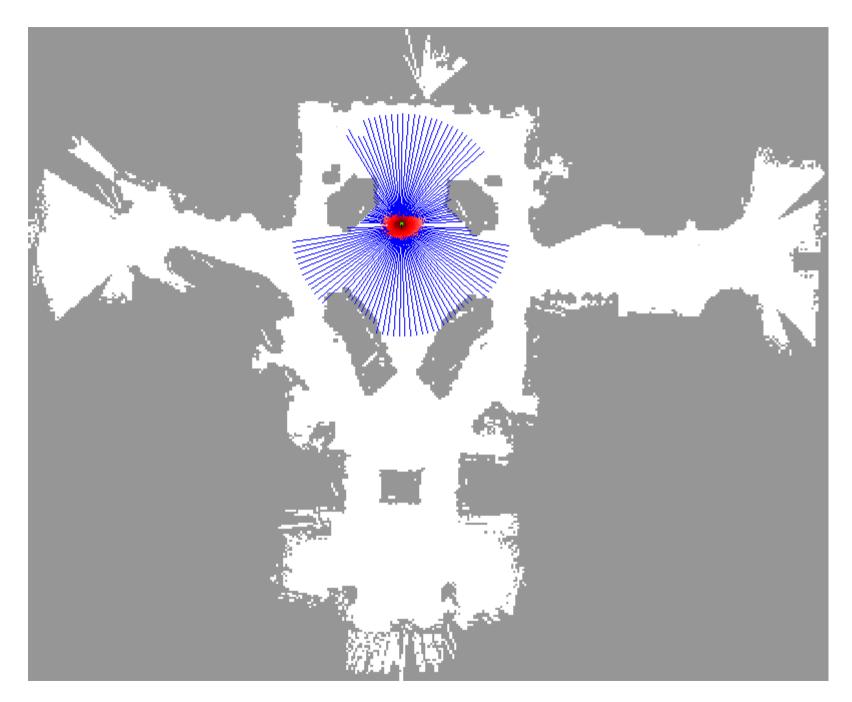


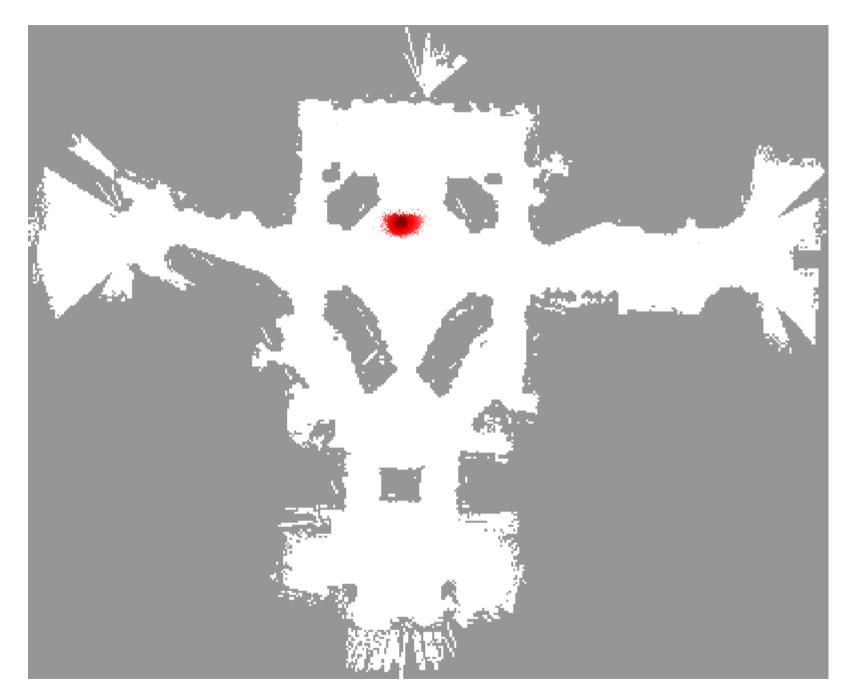


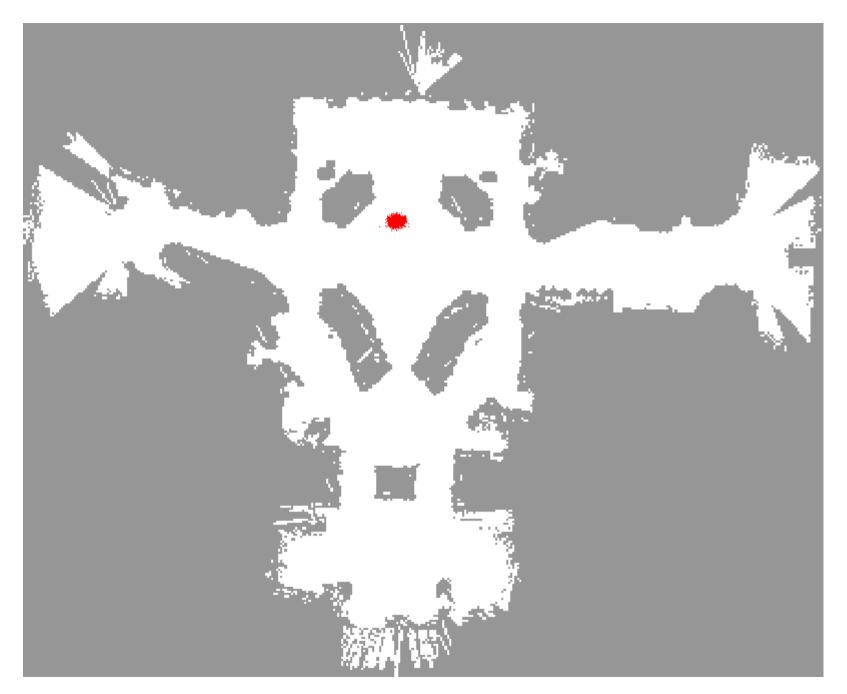


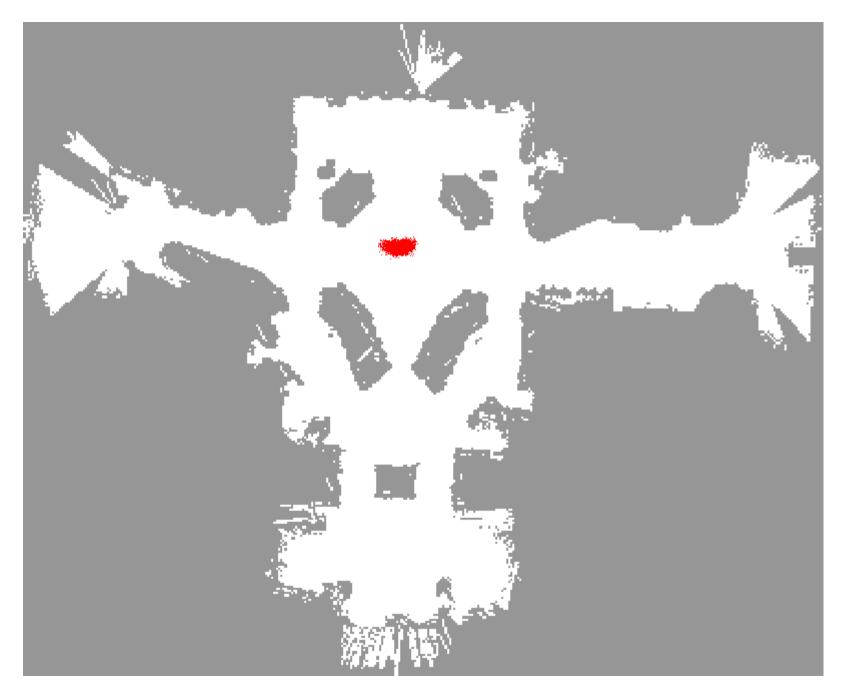


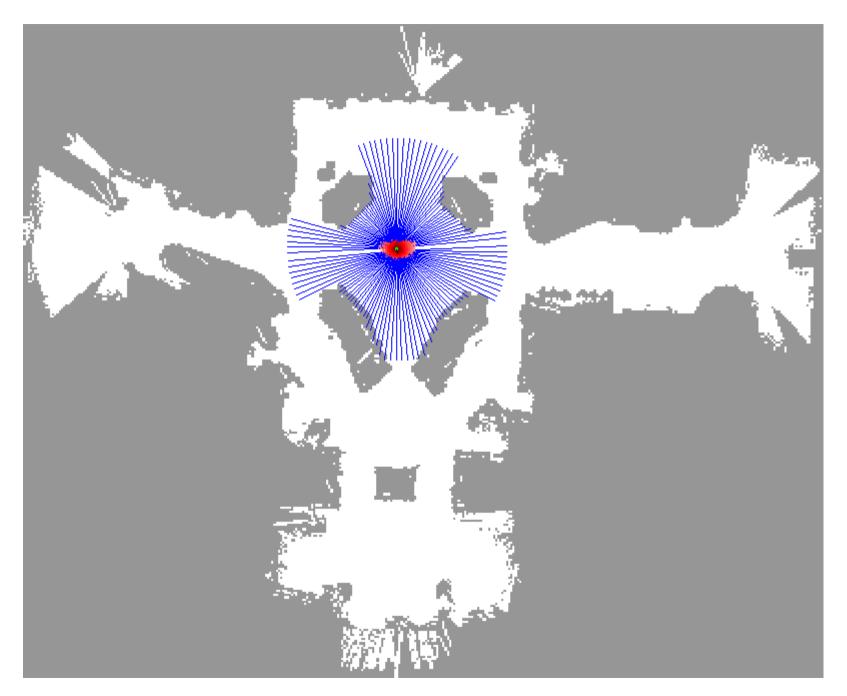


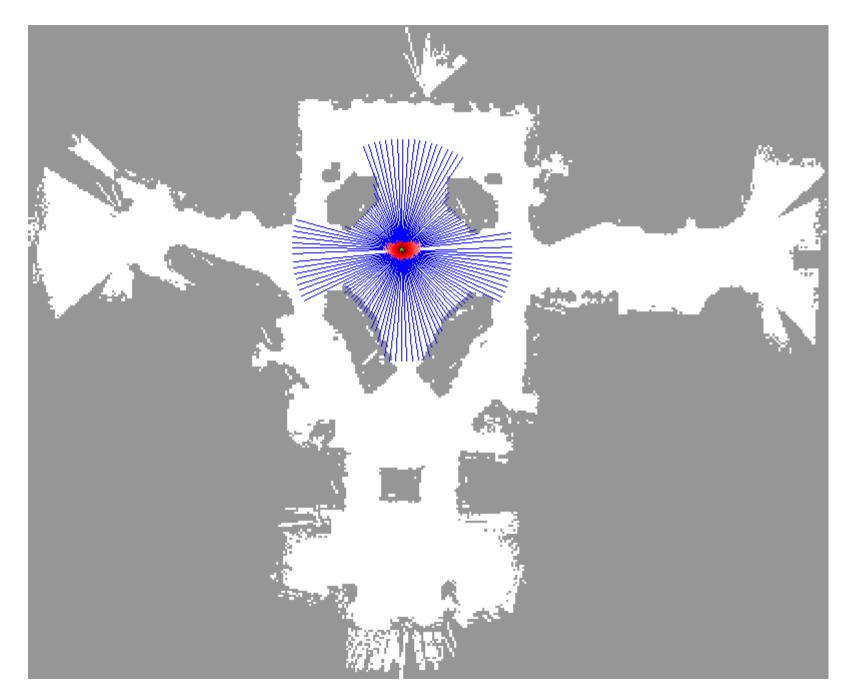




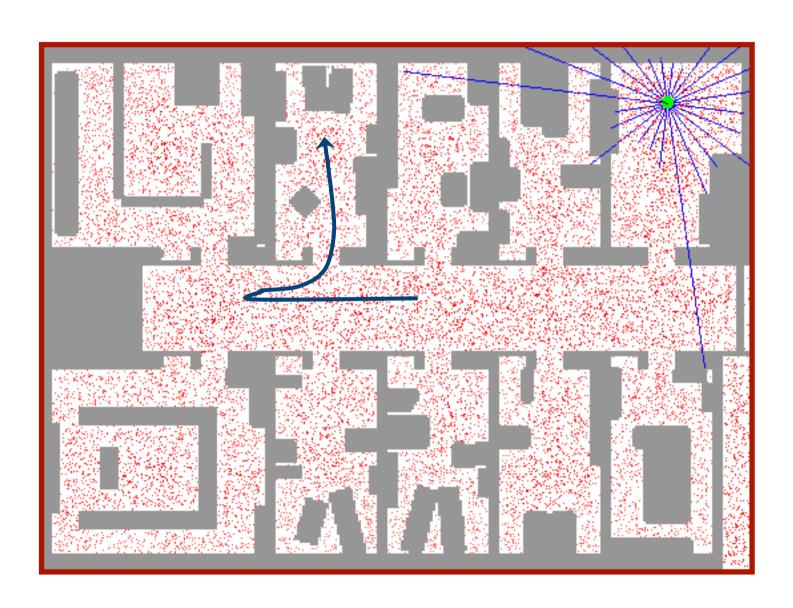




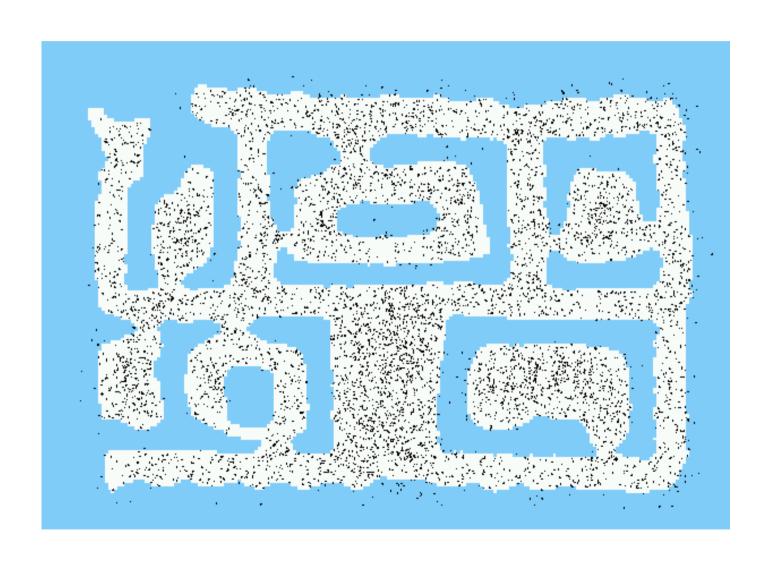




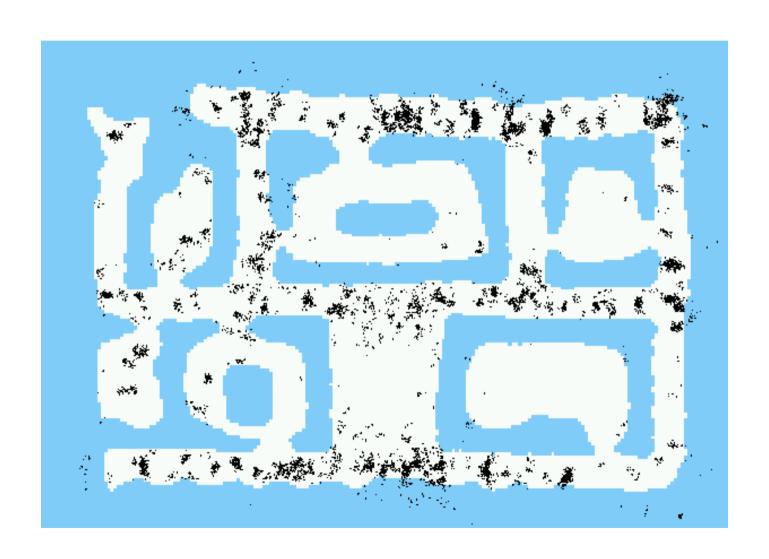
Sample-based Localization (sonar)



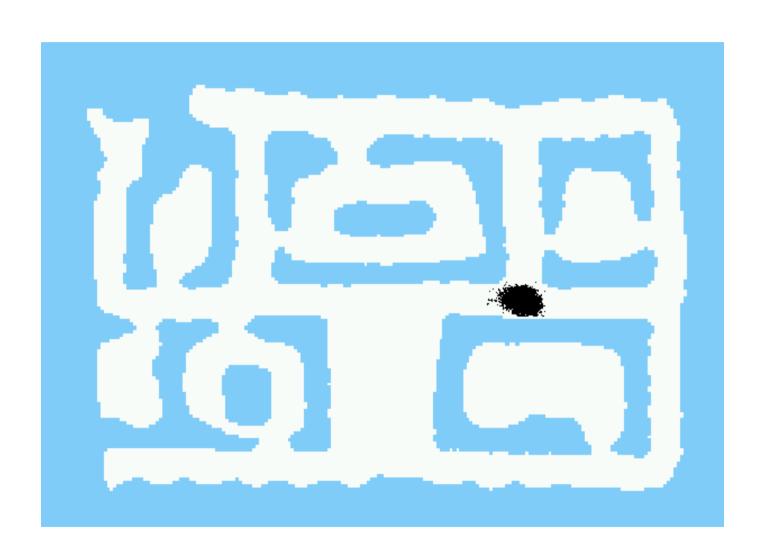
Initial Distribution



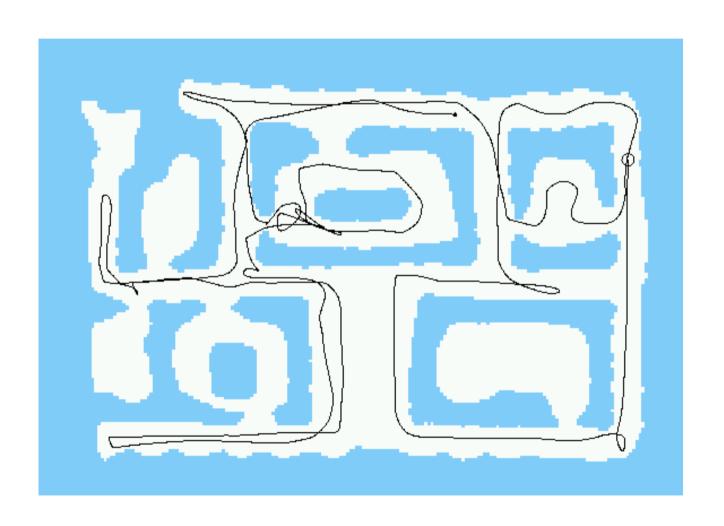
After Incorporating Ten Ultrasound Scans



After Incorporating 65 Ultrasound Scans



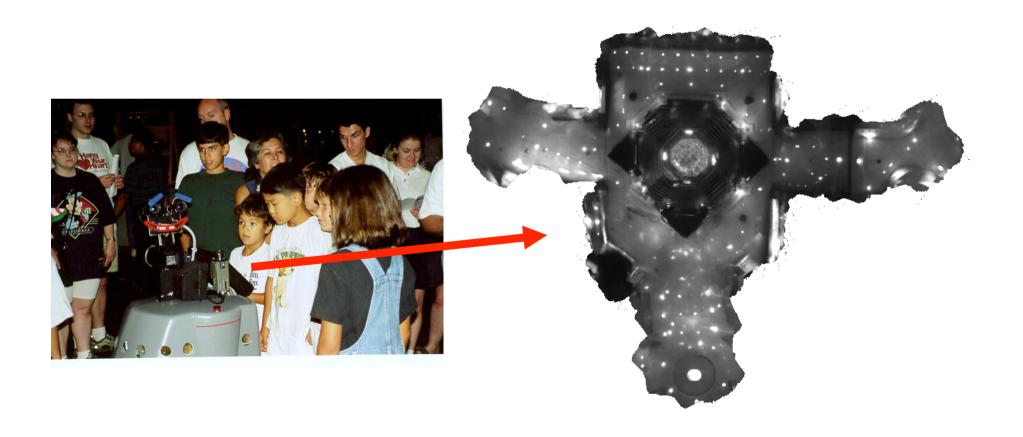
Estimated Path



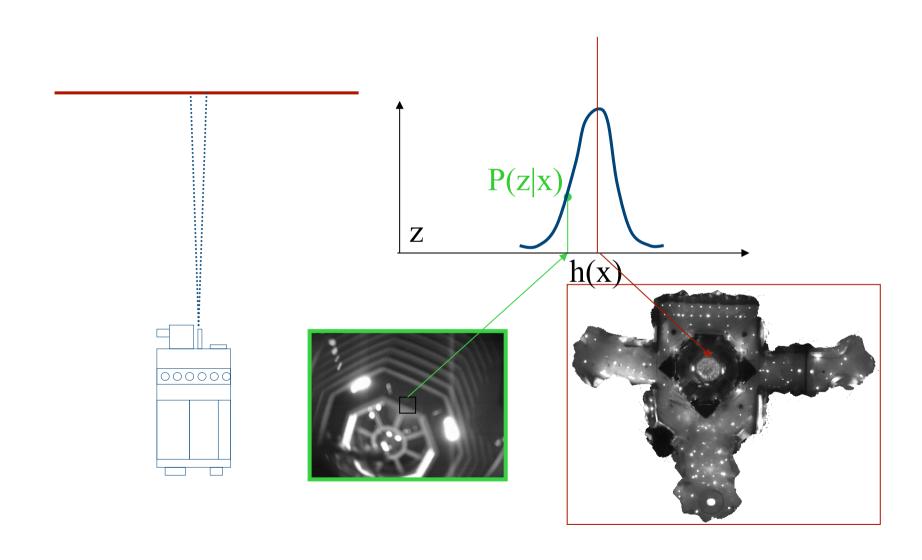
Localization for AIBO robots



Using Ceiling Maps for Localization



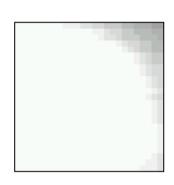
Vision-based Localization

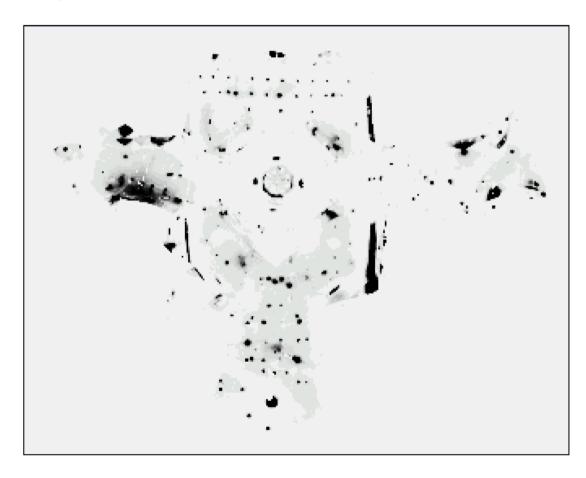


Under a Light

Measurement z:

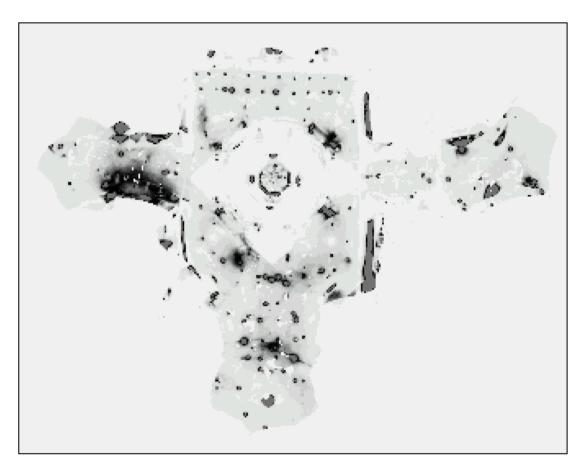
P(z|x):





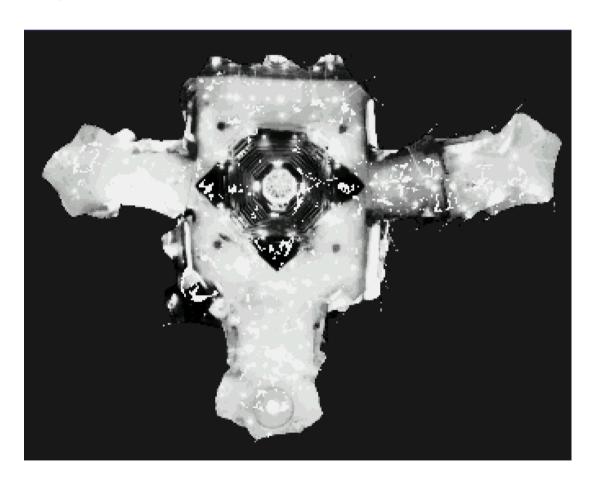
Next to a Light

Measurement z:

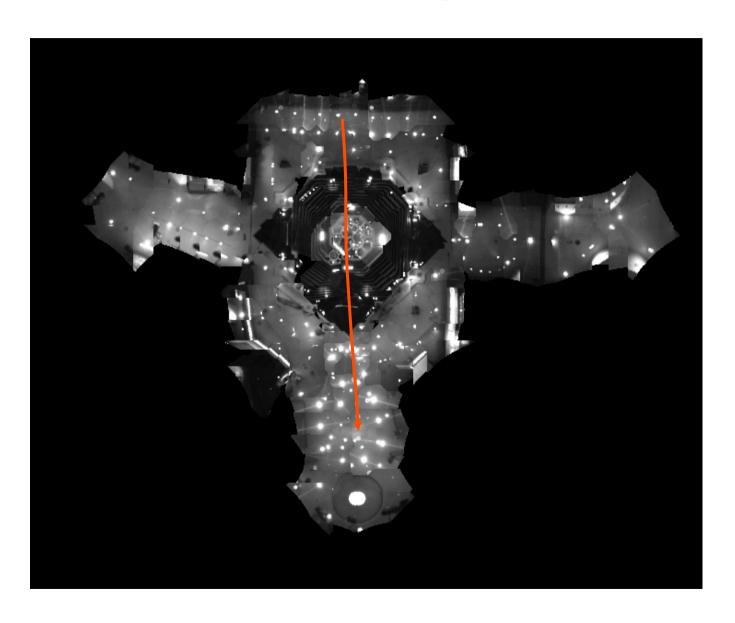


Elsewhere

Measurement z: P(z|x):



Global Localization Using Vision



Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.