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Probabilistic Robotics

Key idea:

Explicit representation of uncertainty
(using the calculus of probability theory)

= Perception = state estimation
= Action = utility optimization



Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.

= 0<Pr(A)<1

= Pr(True) =1

= Pr(A

~ B) = Pr(A) + Pr(B) - Pr(A

Pr(False) =0
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A Closer Look at Axiom 3

Pr(ALC B) =Pr(A) +Pr(B) - Pr(A

True

A
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Using the Axioms

Pr(AL-A) Pr(A)+Pr(=A) —-Pr(AL-A)
Pr(True) Pr(A) + Pr(=A) — Pr(False)
1 = Pr(A) +Pr(-A) -0

Pr-A) = 1-Pr(A



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
in {Xy, X5, «oey Xpt

= P(X=x;) or P(x;) is the probability that the
random variable X takes on value x;

= P(-) is called probability mass function

- E.g. P(Room) =(0.7,0.2,0.080.02)



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) is a probability density

function

= E.qQ.

Pr(xt(a,b)) = T p(x)dx

p(x) |
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“Probability Sums up to One”

Discrete case Continuous case

> P(x)=1 Jp(x) dx =1



Joint and Conditional Probability
= P(X=x and Y=y) = P(x,y)

= If X and Y are independent then
P(x,y) = P(x) P(y)

= P(x | y) is the probability of x given y
P(x | y) =P(x,y)/ P(y)
P(x,y) = P(x|y)P(y)

= If X and Y are independent then
P(x | y) = P(x)



Law of Total Probability

Discrete case Continuous case

P(x) =" P(x|y)P(y)  p(x) =] p(x|y)p(y) dy
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Marginalization

Discrete case

P(x) =2 P(xy)

Continuous case

p(x) = [ p(x, y) dy
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Bayes Formula

P(x,y) = P(x]y)P(y) = P(Y | X)P(X)

—

P(x|y) =

P(y|x) P(x) _ likelihood[prior

P(y) evidence




Normalization

P(y|x) P(x) _
P(y)

n=P(y)" =

P(x|y) =

nn P(y|x)P(x)
1

X

Algorithm:
[Ix:aux,, = P(y|[x) P(x)

1
/7 =
ZaUXXIy

[Ix: P(x]y) =n aux,,

> Py X)P(x)
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Bayes Rule
with Background Knowledge

P(y|x,2) P(x]|2)
P(y|2)

P(x]y,2) =
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Conditional Independence

2)=P(x|2)P(y|2)

= Equivalent to P(X‘ 2)=P(x]|zY)

P(Xx,y

and P(y‘ 2)=P(y]|zX)

= But this does not necessarily mean
P(x y)=P(X)P(y)

(independence/marginal independence)
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open|z)?

-
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Causal vs. Diagnostic Reasoning
= P(open|z) is diagnostic

= P(z|lopen) is causal
= Often causa wledge is easier to

obtain count frequencies!

= Bayes rule allows us to us€ causal
knowledge:

P(z] open) P(open)
P(2)

P(open|z) =
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Example

= P(zlopen) = 0.6 P(z]-open) = 0.3
= P(open) = P(-open) = 0.5

P(z] open) P(open)
P(z| open) p(open) + P(z| - open) p(-open)
0.6[0.5 0.3

P(open|z) = = =0.67
0.6[0.5+0.3[M.5 0.3+0.15

P(open| z) =

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
P(X| z...z,)?

19



Recursive Bayesian Updating

P(z|z,...,2z0-1)

Markov assumption:
Z, is independent of z,,...,z,_; if we know x

:P(Zn|X) P(X]|z,...,zn-1)

P(X|z,...,z) P(2| ... 202

=n P(zn|X) P(X|z,...,2n-1)
= [P 1% P

I=1...n
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Example: Second Measurement

= P(z|open) = 0.5 P(z,|-open) = 0.6
= P(open|z)=2/3

P(z, | open) P(open| z)

P : =
etz = Bz, open) Plopen| ) + P(z, | ~open) P(~open| 2)
1 E
__ 23 _ .3 _3_5_
=_38 -3 -2_2 0.625
12,31 1,178

* Z, lowers the probability that the door is open
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A Typical Pitfall

= Two possible locations x; and x,

» P(x,)=0.99
» P(z|x,)=0.09 P(z]|x,)=0.07

p(x|d

09
0.8
0.7
0.6
05
04
03
0.2
0.1

1
10

1
15

| | |
20 25 30
Number of integrations

35

40

1
45 5l

22



Actions

= Often the world is dynamic since
= actions carried out by the robot,
= actions carried out by other agents,
= or just the time passing by
change the world

= How can we incorporate such actions?

23



Typical Actions

The robot turns its wheels to move

The robot uses its manipulator to grasp
an object

Plants grow over time...

Actions are never carried out with
absolute certainty

In contrast to measurements, actions
generally increase the uncertainty
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Modeling Actions

= To incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x|u,x")

= This term specifies the pdf that
executing u changes the state
from x’ to x.
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Example: Closing the door

-
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State Transitions

P(x|u,x’) for u = “close door”:

0.9 ™\
“\__ 0

If the door is open, the action “close door”
succeeds in 90% of all cases
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Integrating the Outcome of Actions

Continuous case:

P(x|u) = j P(x|u, X')P(x")dx

Discrete case:

P(x|u) =) P(x|u,x)P(x)
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Example: The Resulting Belief
P(closed |u) =) P(closed |u, x')P(X)
= P(closed |u, open) P(open)
+ P(closed | u, closed) P(closed)
9 EE 1[E 15
10 8 1 8 16
P(open|u) =) P(open|u,x)P(x)
= P(open | u, open) P(open)
+ P(open | u, closed) P(closed)

420
8 1

P(closec

3_1
8 16
|u)
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Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:

d ={u,z...,u,z}
= Sensor model P(z|x)

= Action model P(x|u,x’)
= Prior probability of the system state P(x)

= Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel (%) = P(X |ty 2, - Uy, 2)
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Markov Assumption

P(Z | Xo1» Zipsy Uie) = P(Z [ %)
POX, | Xpacs Zigs Uy ) = POX | Xt W)

Underlying Assumptions

= Static world

= Independent noise

= Perfect model, no approximation errors
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Z = observation

Bayes Filters ‘ ~ atate]

X = state

Bel (%) = P(X [W,z...,u,7)
Bayes =NP(Z | X, Uy, Z, . U)P(X U Z,e )
Markov =nP(z | x)P(X |u,z,..,u,)
Total prob.  =1]P(Z xt)f P(x |U;,Z,..,U,%X_,)
P(x_ |u,Zz...,u)dx_,
Markov =nP(z | x) j P(x |u,X_)P(X_ |Uy,Z,..,u)dX_,
vakor— =11P(z %) [ P(X [Ur, X )Py [ Uy 2y, 2y )Xy

=nP(z %) | P(X |u, %) Bel(X_,) dx
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Bel(x) =77 P(z |%) | P(X |u, %) Bel(x,) X,

Algorithm Bayes_filter( Bel(x),d ):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x) = P(z| x) Bel (x)
n=n+Bed'(x)
For all x do
Bel'(x) =77'Bel'(X)

Else if d is an action data item u then

®NOU A W

= O
.O -

For all x do
Bel'(X) = j P(x|u,x') Bel(x') dx’

Return Bel ’(x)

e
N =
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Bayes Filters are Familiar!

Bel(x) =77 P(z |%) | P(X |u, %) Bel(x_,) dx,,

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks

= Partially Observable Markov Decision
Processes (POMDPs)
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Summary

= Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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