Introduction to Mobile Robotics

Robot Motion Planning

Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras

Slides by Kai Arras Last update July 2011 With material from S. LaValle, JC. Latombe, H. Choset et al., W. Burgard

Robot Motion Planning

Contents

- Introduction
- Configuration Space
- Combinatorial Planning
- Sampling-Based Planning
- Potential Fields Methods
- A*, Any-Angle A*, D*/D* Lite
- Dynamic Window Approach (DWA)
- Markov Decision Processes (MDP)

Robot Motion Planning

J.-C. Latombe (1991):

"...eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

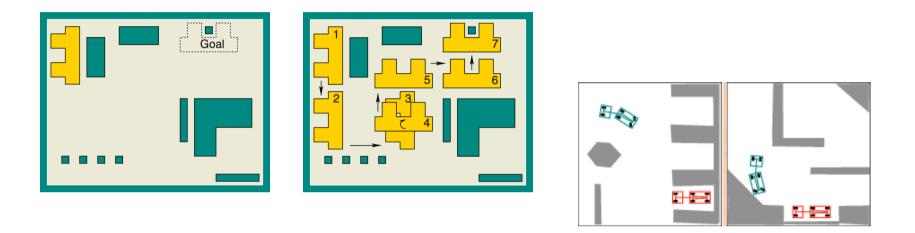
Goals

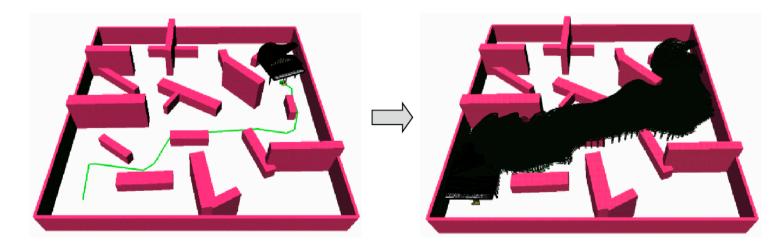
- Collision-free trajectories
- Robot should reach the goal location as fast as possible

Problem Formulation

- The problem of motion planning can be stated as follows. Given:
 - A **start** pose of the robot
 - A desired goal pose
 - A geometric description of the robot
 - A geometric description of the **world**
- Find a path that moves the robot gradually from start to goal while never touching any obstacle

Problem Formulation

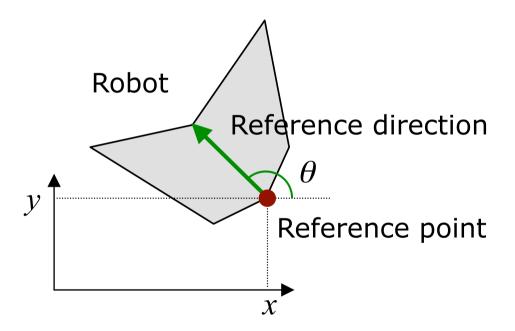




Motion planning is sometimes also called **piano mover's problem**

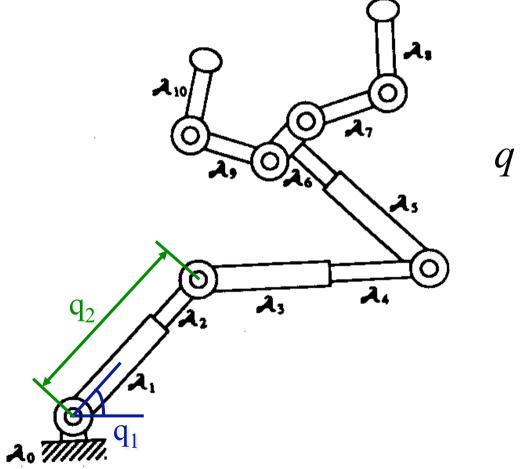
- Although the motion planning problem is defined in the regular world, it lives in another space: the configuration space
- A robot configuration q is a specification of the positions of all robot points relative to a fixed coordinate system
- Usually a configuration is expressed as a vector of positions and orientations

Rigid-body robot example



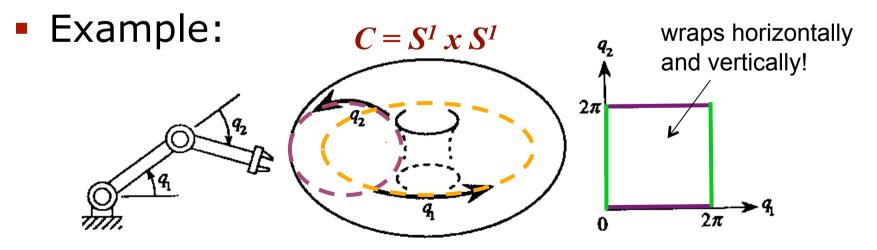
- 3-parameter representation: $q = (x, y, \theta)$
- In 3D, q would be of the form $(x,y,z,\alpha,\beta,\gamma)$

Articulated robot example

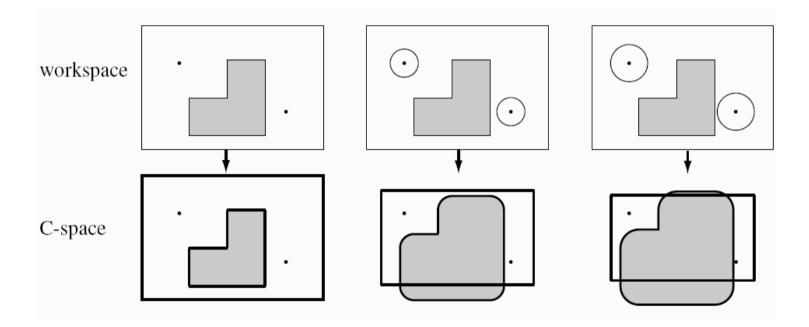


 $q = (q_1, q_2, \dots, q_{10})$

- The configuration space (C-space) is the space of all possible configurations
- The topology of this space is usually **not** that of a Cartesian space
- The C-space is described as a topological manifold

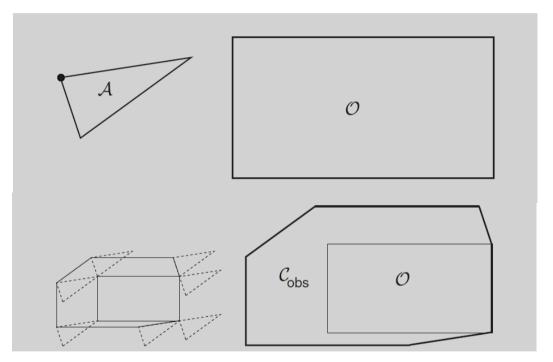


Example: circular robot



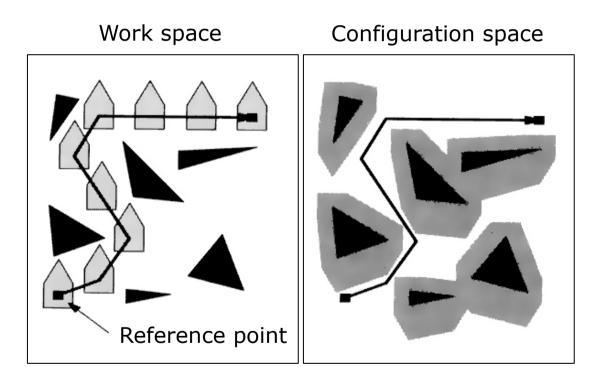
 C-space is obtained by sliding the robot along the edge of the obstacle regions "blowing them up" by the robot radius

Example: polygonal robot, translation only



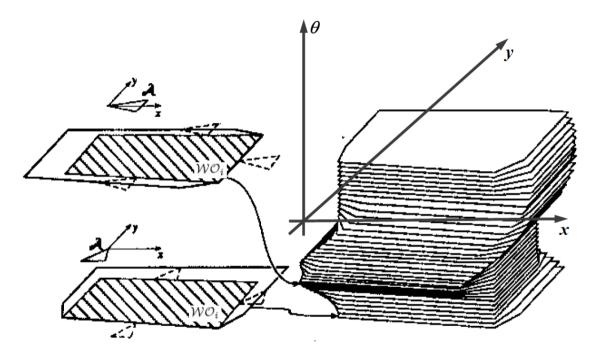
 C-space is obtained by sliding the robot along the edge of the obstacle regions

Example: polygonal robot, translation only



 C-space is obtained by sliding the robot along the edge of the obstacle regions

Example: polygonal robot, trans+rotation



 C-space is obtained by sliding the robot along the edge of the obstacle regions in all orientations

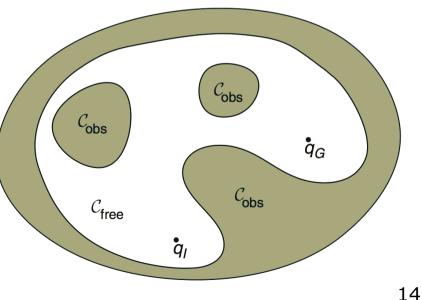
Free space and obstacle region

• With $\mathcal{W} = \mathbb{R}^m$ being the work space, $\mathcal{O} \in \mathcal{W}$ the set of obstacles, $\mathcal{A}(q)$ the robot in configuration $q \in \mathcal{C}$

$$\mathcal{C}_{free} = \{ q \in \mathcal{C} \mid \mathcal{A}(q) \cap \mathcal{O} = \emptyset \}$$

$$\mathcal{C}_{obs} = \mathcal{C}/\mathcal{C}_{free}$$

We further define
 q_I: start configuration
 q_G: goal configuration



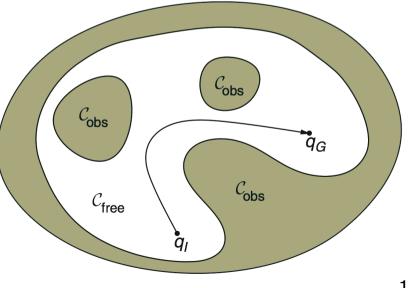
Then, motion planning amounts to

Finding a continuous path

$$\tau: [0,1] \to \mathcal{C}_{free}$$

with
$$\tau(0) = q_I, \, \tau(1) = q_G$$

 Given this setting, we can do planning with the robot being a point in C-space!



C-Space Discretizations

- Continuous terrain needs to be discretized for path planning
- There are two general approaches to discretize C-spaces:

Combinatorial planning

Characterizes C_{free} explicitly by capturing the connectivity of C_{free} into a graph and finds solutions using search

Sampling-based planning

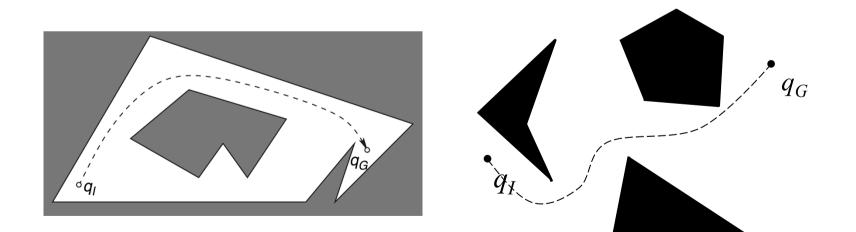
Uses collision-detection to probe and incrementally search the C-space for solution

Combinatorial Planning

- We will look at four combinatorial planning techniques
 - Visibility graphs
 - Voronoi diagrams
 - Exact cell decomposition
 - Approximate cell decomposition
- They all produce a road map
 - A road map is a graph in C_{free} in which each vertex is a configuration in C_{free} and each edge is a collision-free path through C_{free}

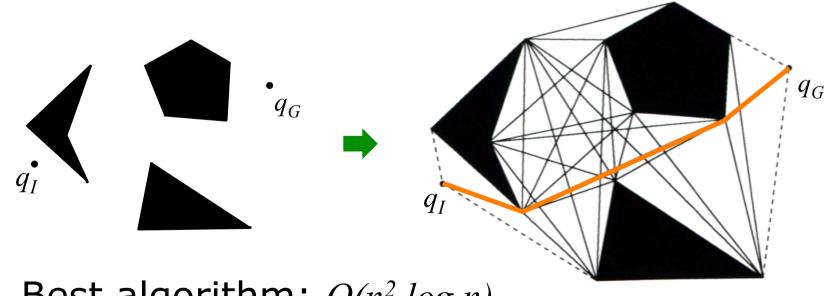
Combinatorial Planning

- Without loss of generality, we will consider a problem in W = R² with a **point robot** that cannot rotate. In this case: C = R²
- We further assume a **polygonal** world



Visibility Graphs

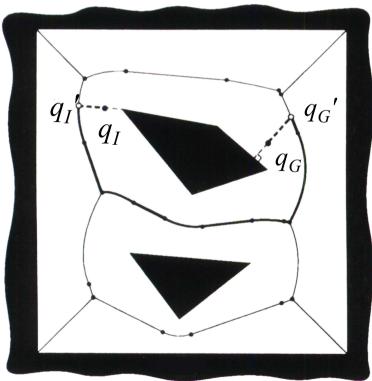
- Idea: construct a path as a polygonal line connecting q_I and q_G through vertices of C_{obs}
- Existence proof for such paths, optimality
- One of the earliest path planning methods



Best algorithm: O(n² log n)

Generalized Voronoi Diagram

- Defined to be the set of points q whose cardinality of the set of boundary points of C_{obs} with the same distance to q is greater than 1
- Let us decipher this definition...
- Informally: the place with the same maximal clearance from all nearest obstacles



Generalized Voronoi Diagram

• Formally:

Let $\beta = \partial C_{free}$ be the boundary of C_{free} , and d(p,q) the Euclidian distance between p and q. Then, for all q in C_{free} , let

 $clearance(q) = \min_{p \in \beta} d(p,q)$

be the *clearance* of q, and

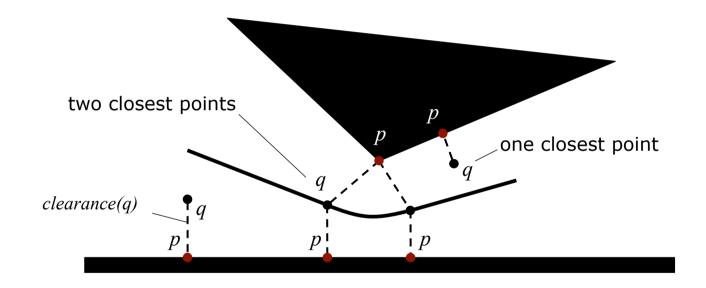
 $near(q) = \{ p \in \beta \ | \ d(p,q) = clearance(q) \}$

the set of "base" points on β with the same clearance to q. The **Voronoi diagram** is then the set of q's with more than one base point p

 $V(\mathcal{C}_{free}) = \{ q \in \mathcal{C}_{free} \mid |near(q)| > 1 \}$

Generalized Voronoi Diagram

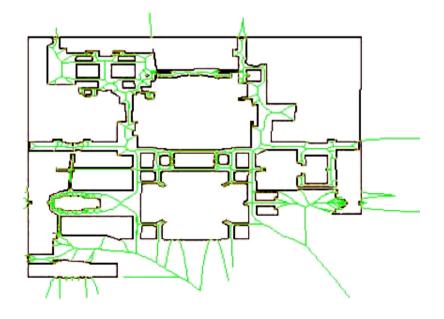
Geometrically:



- For a polygonal C_{obs}, the Voronoi diagram consists of (n) lines and parabolic segments
- Naive algorithm: O(n⁴), best: O(n log n)

Voronoi Diagram

- Voronoi diagrams have been well studied for (reactive) mobile robot path planning
- Fast methods exist to compute and update the diagram in real-time for low-dim. C's
 - Pros: maximize clearance is a good idea for an uncertain robot
 - Cons: unnatural attraction to open space, suboptimal paths
- Needs extensions

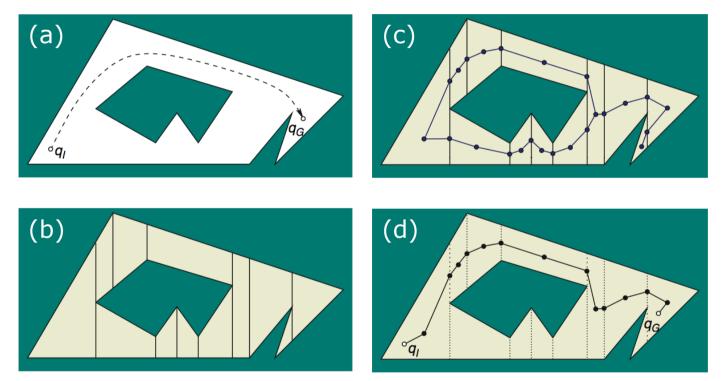


Exact Cell Decomposition

- Idea: decompose C_{free} into non-overlapping cells, construct connectivity graph to represent adjacencies, then search
- A popular implementation of this idea:
 - Decompose C_{free} into trapezoids with vertical side segments by shooting rays upward and downward from each polygon vertex
 - Place one vertex in the interior of every trapezoid, pick e.g. the centroid
 - 3. Place one **vertex** in every vertical **segment**
 - **4.** Connect the vertices

Exact Cell Decomposition

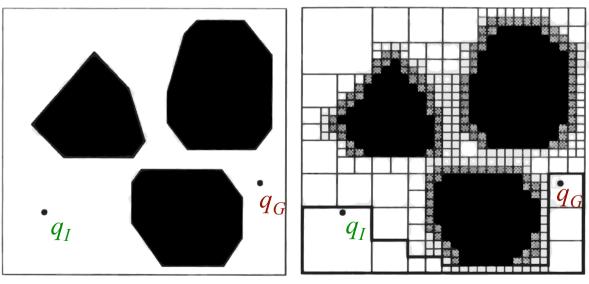
• Trapezoidal decomposition ($C = \mathbb{R}^3 \max$)



 Best known algorithm: O(n log n) where n is the number of vertices of C_{obs}

Approximate Cell Decomposition

- Exact decomposition methods can be involved and inefficient for complex problems
- Approximate decomposition uses cells with the same simple predefined shape



Quadtree decomposition

Approximate Cell Decomposition

- Exact decomposition methods can be involved and inefficient for complex problems
- Approximate decomposition uses cells with the same simple predefined shape

Pros:

- Iterating the **same** simple computations
- Numerically more stable
- Simpler to implement
- Can be made complete

Combinatorial Planning

Wrap Up

- Combinatorial planning techniques are elegant and complete (they find a solution if it exists, report failure otherwise)
- But: become quickly intractable when C-space dimensionality increases (or n resp.)
- Combinatorial explosion in terms of facets to represent A, O, and C_{obs}, especially when rotations bring in non-linearities and make C a nontrivial manifold
- Use sampling-based planning
 Weaker guarantees but more efficient

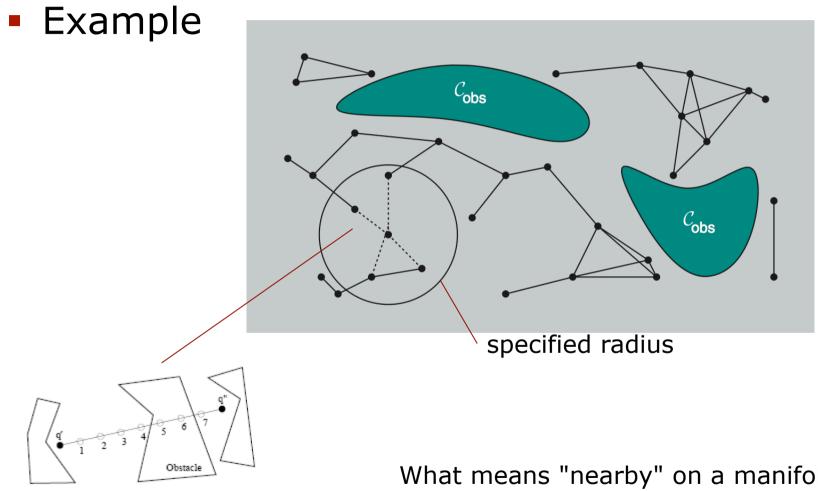
Sampling-Based Planning

- Abandon the concept of explicitly characterizing C_{free} and C_{obs} and leave the algorithm in the dark when exploring C_{free}
- The only light is provided by a collisiondetection algorithm, that probes C to see whether some configuration lies in C_{free}
- We will have a look at
 - Probabilistic road maps (PRM)

[Kavraki et al., 92]

• Rapidly exploring random trees (RRT) [Lavalle and Kuffner, 99]

- Idea: Take random samples from C, declare them as vertices if in C_{free}, try to connect nearby vertices with local planner
- The local planner checks if line-of-sight is collision-free (powerful or simple methods)
- Options for *nearby*: k-nearest neighbors or all neighbors within specified radius
- Configurations and connections are added to graph until roadmap is **dense enough**



Example local planner

What means "nearby" on a manifold? Defining a good metric on *C* is crucial

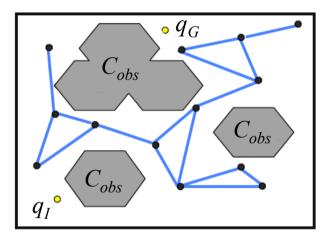
Good and bad news:

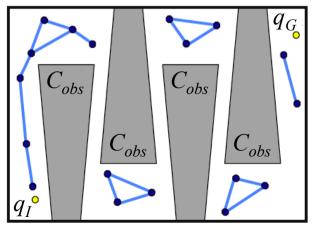
Pros:

- Probabilistically complete
- Do not construct C-space
- Apply easily to high-dim. C's
- PRMs have solved previously unsolved problems

Cons:

- Do not work well for some problems, narrow passages
- Not optimal, not complete

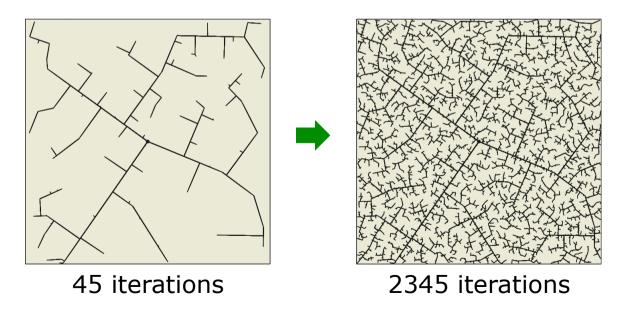




- How to uniformly sample C? This is not at all trivial given its topology
- For example over spaces of rotations: Sampling Euler angles gives samples near poles, not uniform over SO(3). Use quaternions!
- However, PRMs are powerful, popular and many extensions exist: advanced sampling strategies (e.g. near obstacles), PRMs for deformable objects, closedchain systems, etc.

Rapidly Exploring Random Trees

- Idea: aggressively probe and explore the C-space by expanding incrementally from an initial configuration q₀
- The explored territory is marked by a tree rooted at q₀



RRTs

• The algorithm: Given C and q_0

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C})$$

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$ G.add_edge(q_{near}, q_{rand}) 4
- 5
- 6 until condition

Sample from a **bounded region** centered around q_0

E.g. an axis-aligned relative random translation or random rotation

(but recall sampling over rotation spaces problem)

RRTs

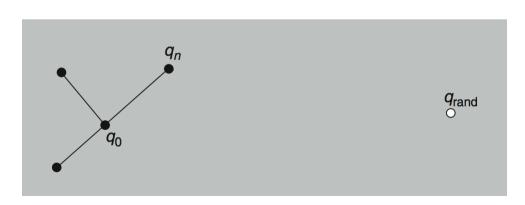
The algorithm

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C})$$

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$ G.add_edge(q_{near}, q_{rand}) 4
- 5
- 6 until condition



Finds closest vertex in G using a **distance function**

$$\rho : \mathcal{C} \times \mathcal{C} \to [0,\infty)$$

formally a *metric* defined on C

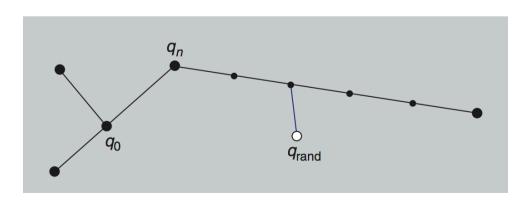
The algorithm

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \quad | \quad q_{rand} \to \text{RANDOM}_{\text{CONFIG}}(\mathcal{C})$$

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$ $G.\text{add}_edge(q_{near}, q_{rand})$ 4
- 5
- 6 until condition



- Several stategies to find q_{near} given the closest vertex on G:
 - Take closest vertex
 - Check intermediate points at regular intervals and split edge at q_{near}

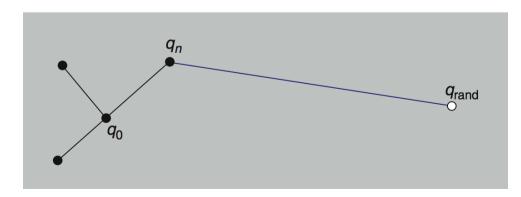
The algorithm

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \mid q_{rand} \to \operatorname{RANDOM_CONFIG}(\mathcal{C})$$

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$ G.add_edge(q_{near}, q_{rand}) $\mathbf{4}$
- 5
- 6 until condition



Connect nearest point with random point using a local planner that travels from q_{near} to q_{rand}

- No collision: add edge
- Collision: new vertex is q_i , as close as possible to C_{obs}

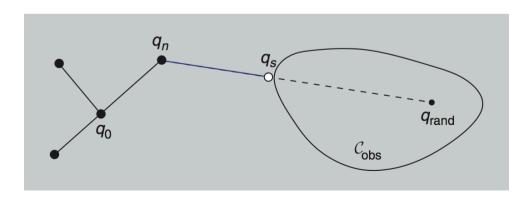
The algorithm

Algorithm 1: RRT

- 1 $G.init(q_0)$
- 2 repeat

$$\mathbf{s} \mid q_{rand} \to \text{RANDOM}_{-}\text{CONFIG}(\mathcal{C})$$

- $q_{near} \leftarrow \text{NEAREST}(G, q_{rand})$ G.add_edge(q_{near}, q_{rand}) $\mathbf{4}$
- 5
- 6 until condition

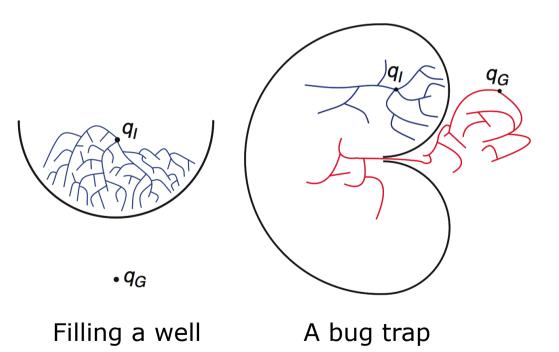


Connect nearest point with random point using a local planner that travels from q_{near} to q_{rand}

- No collision: add edge
- Collision: new vertex is q_i , as close as possible to C_{obs}

- How to perform path planning with RRTs?
 - **1.** Start RRT at q_I
 - **2.** At every, say, 100th iteration, force $q_{rand} = q_G$
 - **3.** If q_G is reached, problem is solved
- Why not picking q_G every time?
- This will fail and waste much effort in running into C_{Obs} instead of exploring the space

- However, some problems require more effective methods: bidirectional search
- Grow **two** RRTs, one from q_I , one from q_G
- In every other step, try to extend each tree towards the newest vertex of the other tree



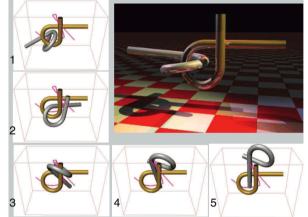
 RRTs are popular, many extensions exist: real-time RRTs, anytime RRTs, for dynamic environments etc.

Pros:

- Balance between greedy search and exploration
- Easy to implement

Cons:

- Metric sensivity
- Unknown rate of convergence



Alpha 1.0 puzzle. Solved with bidirectional RRT

From Road Maps to Paths

- All methods discussed so far construct a road map (without considering the query pair q_I and q_G)
- Once the investment is made, the same road map can be reused for all queries (provided world and robot do not change)
 - **1. Find** the cell/vertex that contain/is close to q_I and q_G (not needed for visibility graphs)
 - **2.** Connect q_I and q_G to the road map
 - **3.** Search the road map for a path from q_I to q_G

Sampling-Based Planning

Wrap Up

- Sampling-based planners are more efficient in most practical problems but offer weaker guarantees
- They are probabilistically complete: the probability tends to 1 that a solution is found if one exists (otherwise it may still run forever)
- Performance degrades in problems with narrow passages. Subject of active research
- Widely used. Problems with high-dimensional and complex C-spaces are still computationally hard

Potential Field Methods

- All techniques discussed so far aim at capturing the connectivity of C_{free} into a graph
- Potential Field methods follow a different idea:

The robot, represented as a point in *C*, is modeled as a **particle** under the influence of a **artificial potential field** U

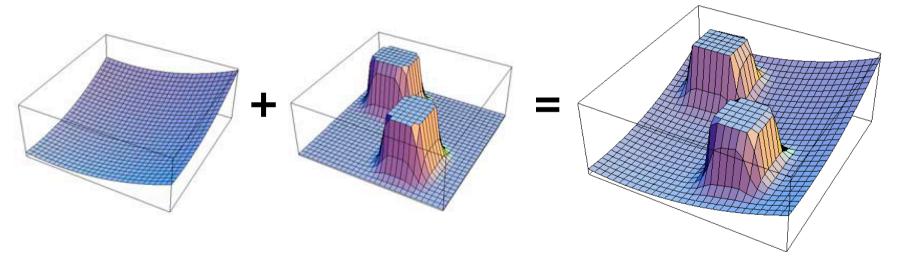
U superimposes

- Repulsive forces from obstacles
- Attractive force from goal

Potential Field Methods

Potential function

$$\mathbf{U}(q) = \mathbf{U}_{att}(q) + \mathbf{U}_{rep}(q)$$
$$\vec{F}(q) = -\vec{\nabla}\mathbf{U}(q)$$



- Simply perform gradient descent
- C-pace typically discretized in a grid

Potential Field Methods

- Main problems: robot gets stuck in local minima
- Way out: Construct local-minima-free navigation function ("NF1"), then do gradient descent (e.g. bushfire from goal)
- The gradient of the potential function defines a vector field (similar to a policy) that can be used as feedback control strategy, relevant for an uncertain robot
- However, potential fields need to represent
 C_{free} explicitely. This can be too costly.

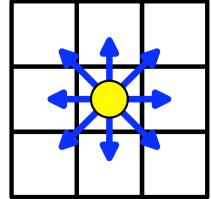
Robot Motion Planning

• Given a road map, let's do **search**!

(١,			۲		0			0									t
				¢	×				١.							×		t
(Ð,	,Q	¢	¢	×	۲		Ņ	¢	۲	۰	۲	,Q	,Q	¢	¢	۲	I
	¢.	¢	×	×	×	۲	¢	¢	۲	¢	¢	۲	¢	¢	۲	¢	۴	I
	¢.	ø	۴			۴				۲			۲	۲	١.	١.	۴	I
	þ.	¢														Þ	۵	I
	¢.			, D			, P	P	, D	, D	,Q	Ð,		, O	,¢	¢)	I
	¢.	¢	×	¢	۲	X	¢	¢	X	¢	¢	۲	X	¢	×	X	۲	I
	¢.	×	×	¢	×	×	¢	¢	۲	¢	¢	۲	×	¢	۲	١.	۵	ľ
	þ.	×	۲	¢	ø	×	¢	¢	×	X	¢	۴	Ò	¢	۲	١.)	Ī
	þ.	G)					6		-0-			-0			6	6	-0	I

A* Search

- A* is one of the most widely-known informed search algorithms with many applications in robotics
- Where are we?
 A* is an instance of an informed algorithm for the general problem of search
- In robotics: planning on a 2D occupancy grid map is a common approach



Search

The problem of **search:** finding a sequence of actions (a *path*) that leads to desirable states (a *goal*)

- Uninformed search: besides the problem definition, no further information about the domain ("blind search")
- The only thing one can do is to expand nodes differently
- Example algorithms: breadth-first, uniform-cost, depth-first, bidirectional, etc.

Search

The problem of **search:** finding a sequence of actions (a *path*) that leads to desirable states (a *goal*)

- Informed search: further information about the domain through heuristics
- Capability to say that a node is "more promising" than another node
- Example algorithms: greedy best-first search, A*, many variants of A*, D*, etc.

Search

The performance of a search algorithm is measured in four ways:

- Completeness: does the algorithm find the solution when there is one?
- **Optimality:** is the solution the best one of all possible solutions in terms of path cost?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed to perform the search?

Uninformed Search

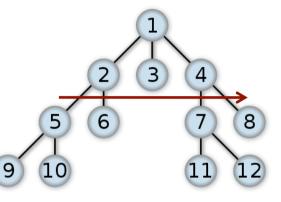
Breadth-first

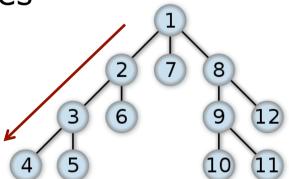
- Complete
- Optimal if action costs equal
- Time and space: $O(b^d)$

Depth-first

- Not complete in infinite spaces
- Not optimal
- Time: *O(b^m)*
- Space: O(bm) (can forget explored subtrees)

(b: branching factor, d: goal depth, m: max. tree depth)





Breadth-First Example

\mathbf{O}	\mathbb{R}		Ŕ	Ŕ	\mathbb{R}		R	Ŕ	Ŕ	\bigotimes	P		¢	R	<i>₿</i> €	P	
Ŕ	\mathbf{D}	Q	-Ó	X	Þ	Q	¢	X	Ŕ	X	þ		¢	X	Ŕ	$\overline{\mathbf{P}}$	
Ŕ	Þ		Ò	X	$\mathbf{\hat{\mathbf{A}}}$		Ý	X	X	X	Þ		¢	X	X	$\mathbf{\hat{P}}$	
٥́-	-0		¢	X	$\mathbf{\mathbf{\hat{P}}}$		¢	Ŕ	X	Ý	\mathbf{b}		Ŏ-	Ŕ	Ŕ	$\mathbf{\hat{P}}$	
			Ŕ	X	À			X	X	X					X	$\underline{\flat}$	
Q	$\underline{\mathbb{R}}$	X	X	X	X	R	X	X	X	X	$\mathbf{\hat{k}}$	\mathcal{R}	\mathbb{R}	Q	X	$\mathbf{\hat{P}}$	
Ŕ	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathbf{\hat{P}}$	
¢	Ý	$\mathbf{\mathbf{\hat{b}}}$	ð	-Ó-	ð	ð	ð	-ð	ð	÷)	ð	ð	ð	Ò	Ò	$\mathbf{\hat{P}}$	
Ŕ	X														X	\mathbf{D}	
Ŕ	<u>Þ</u>	R	\mathcal{R}	2		R	\mathbf{R}	\mathcal{R}	\mathcal{R}	\mathbb{R}	2		R	Q	X	$\mathbf{\hat{P}}$	
Ŕ	X	X	X	X	X	Ŕ	X	X	Ò	X	X	X	Ŕ	X	X	$\mathbf{\hat{P}}$	
Ŕ	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\overline{\mathbf{A}}$	
¢	X	X	X	Þ	X	Ý	X	X	X	X	Ý	À	Ŕ	X	X	\mathbf{b}	
١ ا	@	ð	ð	-ð		ð	ð	÷	ð	ð	Ì		١¢	ð	ð	-0	

Informed Search

- Nodes are selected for expansion based on an **evaluation function** f(n) from the set of generated but not yet explored nodes
- Then select node first with lowest f(n) value
- Key component to every choice of f(n):
 Heuristic function h(n)
- Heuristics are most common way to inject domain knowledge and inform search
- Every h(n) is a cost estimate of cheapest path from n to a goal node

Informed Search

Greedy Best-First-Search

- Simply expands the node closest to the goal $f(n) = h(n) \label{eq:f}$
- Not optimal, not complete, complexity $O(b^m)$

A* Search

 Combines path cost to n, g(n), and estimated goal distance from n, h(n)

f(n) = g(n) + h(n)

- f(n) estimates the cheapest path cost through n
- If h(n) is admissible: complete and optimal!

Heuristics

Admissible heuristic:

Let h*(n) be the true cost of the optimal path from n to the goal. Then h(.) is admissible if the following holds for all n:

$$h(n) \le h^*(n)$$

be optimistic, never overestimate the cost

- Heuristics are problem-specific. Good ones (admissible, efficient) for our task are:
 - Straight-line distance h_{SLD}(n) (as with any routing problem)
 - Octile distance: Manhattan distance extended to allow diagonal moves
 - Deterministic Value Iteration/Dijkstra h_{VI}(n)

Greedy Best-First Example

		<u>Q</u>			\mathbb{R}	\mathfrak{R}	\bigotimes	\mathfrak{R}	\bigcirc		\mathbf{O}	Ŕ	%	\bigcirc	
		$\overline{\mathbf{Q}}$	$\Rightarrow \Rightarrow$	Q	-¢	X	Ŕ	X	$\mathbf{\hat{P}}$		¢	X	Ŕ	\mathbf{D}	
		<u>þ</u>	$\mathbf{\mathbf{b}}$		Ŕ	X	X	X	$\mathbf{\hat{P}}$		¢	X	X	\mathbf{D}	
		$\overline{(0)}$	\Rightarrow		Ŕ	Ŕ	\mathbf{X}	Ý	\mathbf{b}		Ó	-X	Ŕ	$\mathbf{\hat{P}}$	
		$\overline{\mathbf{A}}$	$\dot{\mathbf{x}}$			X	X	X					X	$\mathbf{\hat{P}}$	
	<u>ko</u> l	$\overline{\mathbf{A}}$	\mathbf{x}	R	Ŕ	X	X	Ò	$\mathbf{\hat{X}}$	R	\mathbb{R}	X	X	$\mathbf{\hat{P}}$	
	$\mathbf{\Phi}$	$\mathbf{\mathbf{b}}$	\mathbf{X}	X	X	X	Ŕ	X	X	X	X	X	X	\mathbf{O}	
	\mathbf{A}	d	5f6	ð	ð	ð	ð	ð	ð	÷¢-	ð	-Q	Ŕ	\mathbf{D}	
													X	$\mathbf{\hat{P}}$	
		2		\mathbb{R}	R	\mathcal{R}	R	R	\mathcal{R}		R	X	X	\diamond	
	$\mathbf{\Phi}$	Ò	\mathbf{x}	Ŕ	X	X	Ŕ	X	X	X	Ŕ	X	X	\diamond	
	\mathbb{E}	Ò	\mathbf{X}	X	X	X	Ŕ	X	X	X	X	X	X	$\mathbf{\hat{\mathbf{A}}}$	
	\mathbf{H}	\mathbf{b}	$\Rightarrow \Rightarrow $	Ŕ	X	X	X	X	Ý	Ŕ	Ŕ	X	X	\diamond	
ି ଓ	$f \bullet f$	ک	5	Y	\mathbf{b}	\diamond	X	$\mathbf{\mathbf{\hat{b}}}$	$\mathbf{\hat{\mathbf{A}}}$		ð	ð			

A* with *h*_{SLD} Example

Q			R	Ŕ	\mathbb{R}		\mathbf{Q}	Ŕ	Ŕ	\mathbf{A}	P		¢	\mathbf{R}	<u>\$</u>		
	\bigoplus	X	¢	X	Þ	Q	Ŕ	X	Ŕ	X	þ		¢	X	Ŕ	$\overline{\mathbf{P}}$	
¢	(ϕ)		Ý	X	$\mathbf{\mathbf{\hat{P}}}$		Ý	X	X	X	Þ		¢	X	Þ	$\mathbf{\hat{P}}$	
	\oplus		¢	X	$\mathbf{\mathbf{\hat{P}}}$		Ó	Ŕ	X	Ý	\mathbf{b}		٥́-	-X	Þ	$\mathbf{\hat{P}}$	
			Ŕ	X	À			X	X	X					X	$\underline{\flat}$	
		X	X	X	X	R	X	X	X	X	R	\mathcal{R}	\mathbb{R}	X	¢	$\mathbf{\hat{P}}$	
¢	$\mathbf{\Phi}$	X	X	X	X	X	X	X	X	X	X	X	X	X	Ø	$\mathbf{\hat{P}}$	
¢	$\mathbf{\Phi}$	\mathbf{b}	ð	-Ø-	ð	ð	ð	-ð	ð	÷)	ð	ð	ð	-Ò	Þ	$\mathbf{\hat{P}}$	
	\oplus														X	\mathbf{D}	
	\bigcirc		\mathcal{R}	2		R	\mathbb{R}	\mathcal{R}	\mathcal{R}	\mathbb{R}	2		R	X	¢	$\mathbf{\hat{P}}$	
¢	$\mathbf{\Phi}$	X	X	X	X	Ŕ	X	X	Ò	X	X	Q	X	X	Ø	$\mathbf{\hat{P}}$	
	$\mathbf{\Phi}$	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\overline{\mathbf{A}}$	
¢	$\mathbf{\Phi}$	Þ	X	Þ	X	Ý	X	X	X	X	Ý	À	Ŕ	X	Þ	\mathbf{b}	
	(()	Þ	ð	Ð		Y	ð	÷	-ð-	÷)	Ð		١.	÷	Þð	$\overline{\mathbf{A}}$	

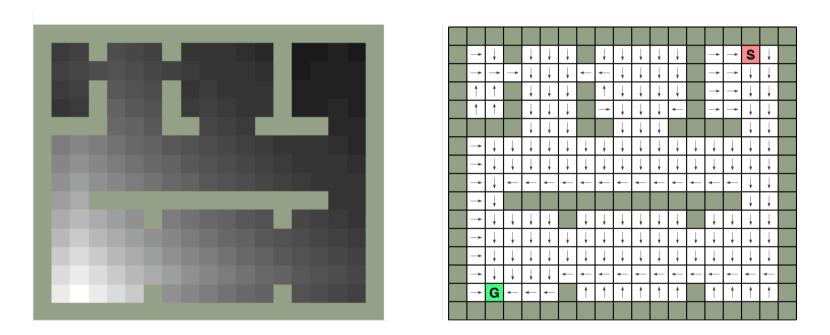
Heuristics for A*

- Deterministic Value Iteration
 - Use Value Iteration for MDPs (later in this course) with rewards -1 and unit discounts
 - Like Dijkstra

 Precompute for dynamic or unknown environments where replanning is likely

Heuristics for A*

Deterministic Value Iteration



 Recall vector field from potential functions: allows to implement a feedback control strategy for an uncertain robot

A* with *h_{VI}* Example

¢	\mathbb{R}		Ŕ	Ŕ	\mathbb{R}		Ŕ	\mathbf{R}	Ŕ	Ŕ	P		¢	Ŕ	\mathbf{R}		
¢	\mathbf{D}	\mathbf{X}	-Ó	X	$\mathbf{\mathbf{\hat{P}}}$	Q	Ŕ	X	Ŕ	X	Þ		¢	X	Ŕ	$\overline{\mathbf{P}}$	
¢	Þ		Ò	X	$\mathbf{\mathbf{\hat{P}}}$		Ŕ	X	X	X	$\mathbf{\hat{P}}$		¢	X	Þ	$\mathbf{\hat{P}}$	
۵-	\rightarrow		¢	X	$\mathbf{\mathbf{\hat{P}}}$		Ó	Ŕ	X	Ý	\mathbf{D}		Ŏ-	Ŕ	Þ	$\mathbf{\hat{P}}$	
			Ŕ	X	Ŕ			X	X	X					X	$\underline{\flat}$	
Q	\mathbb{R}	X	X	X	X	R	X	X	X	X	$\mathbf{\hat{k}}$	2	\mathbb{R}	X	¢	$\mathbf{\hat{P}}$	
¢	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	$\mathbf{\hat{P}}$	
¢	Ý	$\mathbf{\mathbf{A}}$	ð	-Ó-	$\mathbf{\Theta}$	ð	ð	ð	ð	÷)	ð	ð	ð	-X	Þ	$\mathbf{\hat{P}}$	
¢	X														X	\mathbf{D}	
¢	À	R	\mathcal{R}	2		R	\mathbb{R}	\mathbf{R}	\mathcal{R}	\mathbb{R}	2		R	X	¢	$\mathbf{\hat{P}}$	
¢	X	X	X	X	X	Ŕ	X	X	Ò	X	X	Q	X	X	Ø	$\mathbf{\hat{P}}$	
Ó	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Ø		
¢	X	X	X	Ý	X	Ŕ	X	X	X	X	Ý	X	Đ.	X	X	$\mathbf{\hat{P}}$	
Ó	କ	ð	ð	-ð		ð	Ð	ð	ð	ð	Ì		١¢	-ð	Ð	-0	

Problems with A* on Grids

- 1. The shortest path is often very **close to obstacles** (cutting corners)
 - Uncertain path execution increases the risk of collisions
 - Uncertainty can come from delocalized robot, imperfect map or poorly modeled dynamic constraints

2. Trajectories aligned to the grid structure

- Path looks unnatural
- Such paths are longer than the true shortest path in the continuous space

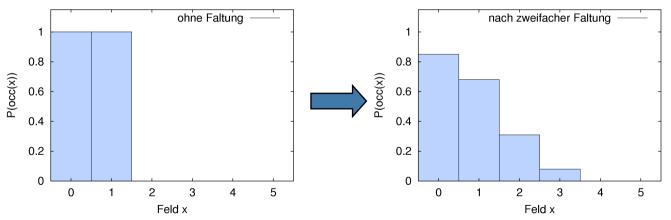
Problems with A* on Grids

- 3. When the path turns out to be blocked during traversal, it needs to be replanned from scratch
 - In unknown or dynamic environments, this can occur very often
 - Replanning in large state spaces is costly
 - Can we reuse the initial plan?

Let us look at **solutions** to these problems...

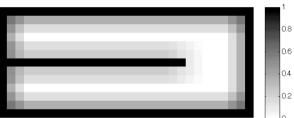
- Given an occupancy grid map
- Convolution blurs the map M with kernel k (e.g. a Gaussian kernel)

$$(M * k)[i] = \sum_{j=-\infty}^{\infty} M[j] \ k[i-j]$$



1D example: cells before and after two convolution runs

 Leads to above-zero probability areas around obstacles. Obstacles
 appear bigger than in reality

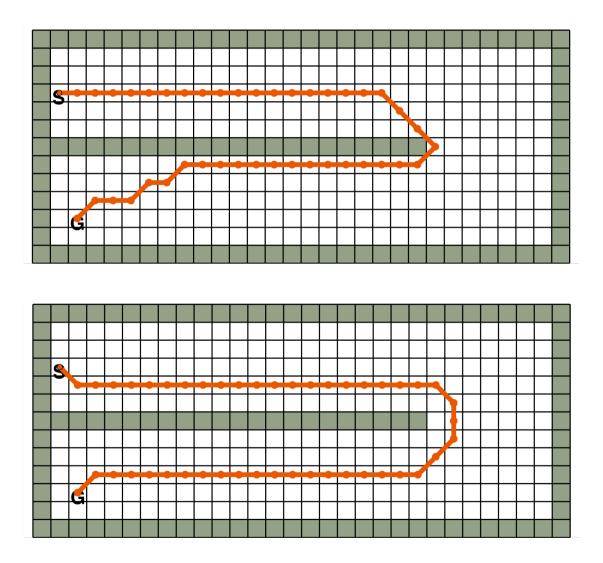


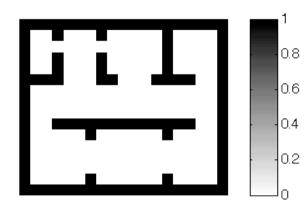
 Perform A* search in convolved map with evaluation function

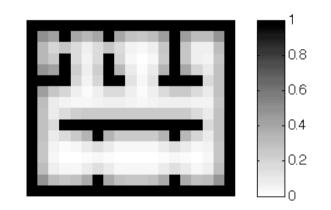
$$f(n) = g(n) \cdot p_{occ}(n) + h(n)$$

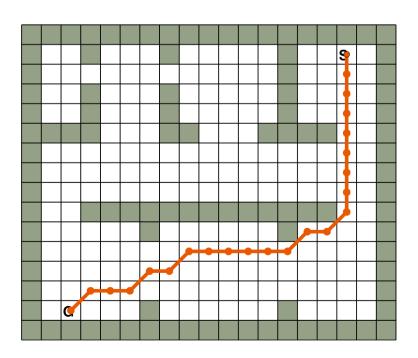
 $p_{occ}(n)$: occupancy probability of node/cell n

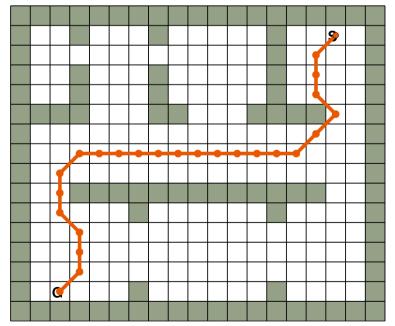
Could also be a term for cell traversal cost





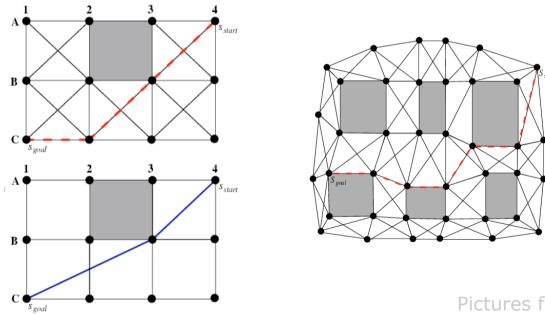


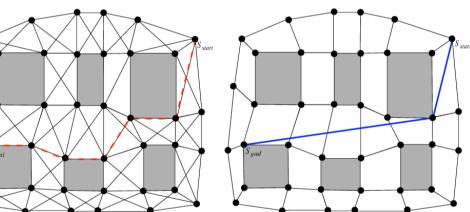




Any-Angle A*

- Problem: A* search only considers paths that are constrained to graph edges
- This can lead to unnatural, grid-aligned, and suboptimal paths





Pictures from [Nash et al. AAAI'07]

Any-Angle A*

- Different approaches:
 - A* on Visibility Graphs Optimal solutions in terms of path length!
 - A* with post-smoothing

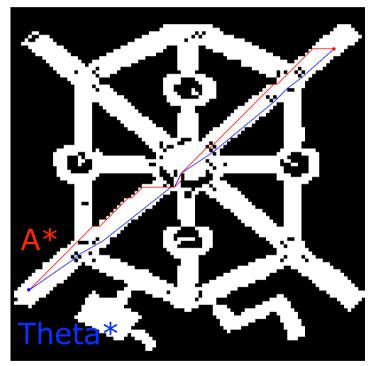
Traverse solution and find pairs of nodes with direct line of sight, replace by line segment

- Field D* [Ferguson and Stentz, JFR'06]
 Interpolates costs of points not in cell centers. Builds upon D* family, able to efficiently replan
- Theta* [Nash et al. AAAI'07, AAAI'10]
 Extension of A*, nodes can have non-neighboring successors based on a line-of-sight test

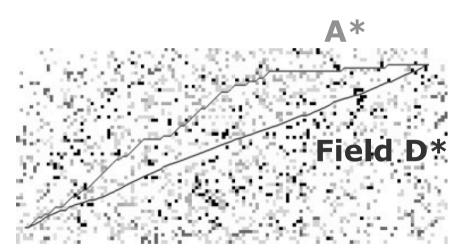
Any-Angle A* Examples

Theta*

Field D*



Game environment

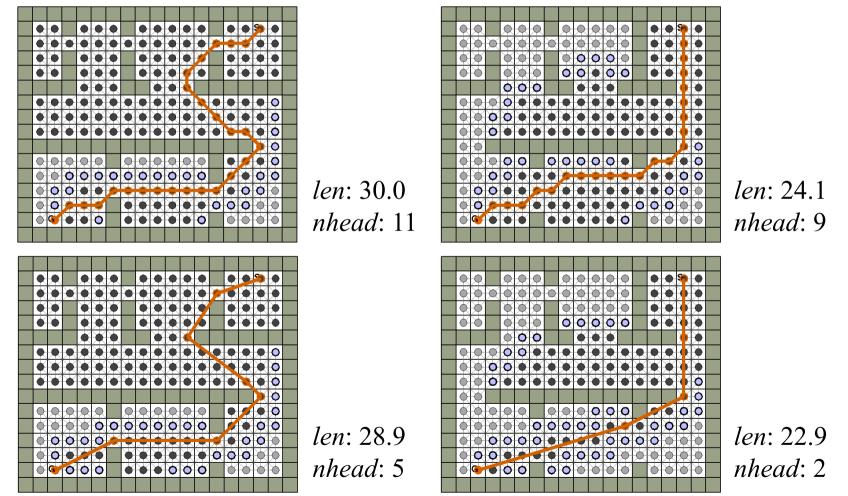


Outdoor environment. Darker cells have larger traversal costs

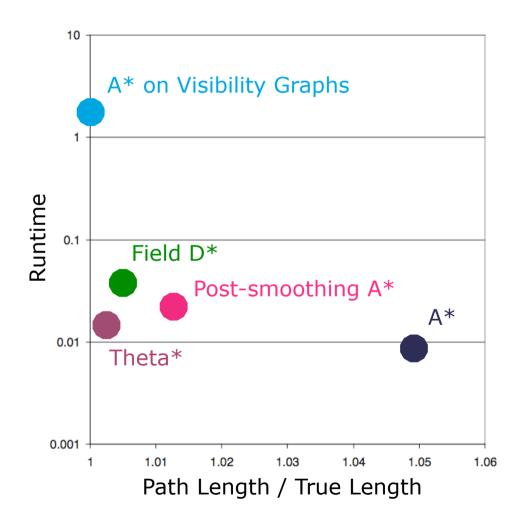
Any-Angle A* Examples

A* vs. Theta*

(*len*: path length, *nhead* = # heading changes)



Any-Angle A* Comparison



[[]Daniel et al. JAIR'10]

 A* PS and Theta* provide the best trade off for the problem

- A* on Visibility Graphs scales poorly (but is optimal)
- A* PS does not always work in nonuniform cost environments.
 Shortcuts can end up in expensive areas

D* Search

- Problem: In unknown, partially known or dynamic environments, the planned path may be blocked and we need to replan
- Can this be done efficiently, avoiding to replan the entire path?
- Idea: Incrementally repair path keeping its modifications local around robot pose
- Several approaches implement this idea:
 - D* (Dynamic A*) [Stentz, ICRA'94, IJCAI'95]
 - **D* Lite** [Koenig and Likhachev, AAAI'02]
 - **Field D*** [Ferguson and Stentz, JFR'06]

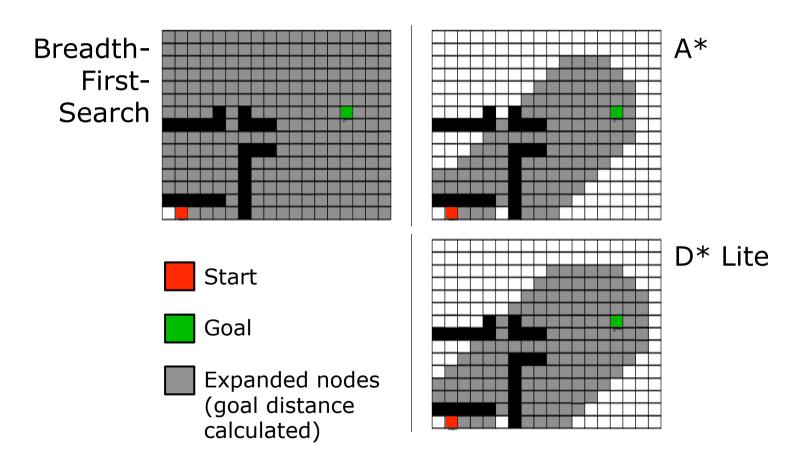
D*/D* Lite

Main concepts

- Switched search direction: search from goal to the current vertex. If a change in edge cost is detected during traversal (around the current robot pose), only few nodes near the goal (=start) need to be updated
- These nodes are nodes those goal distances have changed or not been caculated before AND are relevant to recalculate the new shortest path to the goal
- Incremental heuristic search algorithms: able to focus and build upon previous solutions

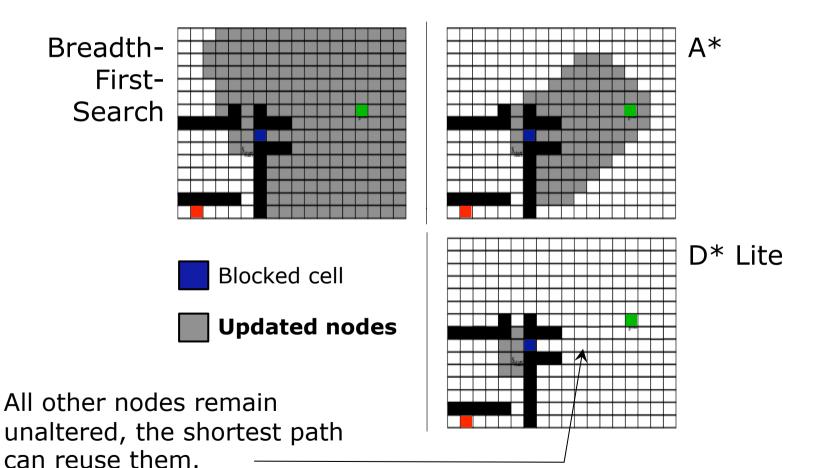
D* Lite Example

Situation at start



D* Lite Example

After discovery of blocked cell



D* Family

- D* Lite produces the same paths than D* but is simpler and more efficient
- D*/D* Lite are widely used
- Field D* was running on Mars rovers
 Spirit and Opportunity (retrofitted in yr 3)

Tracks left by a drive executed with Field D*

Still in Dynamic Environments...

- Do we really need to replan the entire path for each obstacle on the way?
- What if the robot has to react **quickly** to unforeseen, fast moving obstacles?
 - Even D* Lite can be too slow in such a situation
- Accounting for the robot shape (it's not a point)
- Accounting for kinematic and dynamic vehicle constraints, e.g.
 - Decceleration limits,
 - Steering angle limits, etc.

Collision Avoidance

- This can be handled by techniques called collision avoidance (obstacle avoidance)
- A well researched subject, different approaches exist:
 - Dynamic Window Approaches [Simmons, 96], [Fox et al., 97], [Brock & Khatib, 99]
 - Nearness Diagram Navigation [Minguez et al., 2001, 2002]
 - Vector-Field-Histogram+ [Ulrich & Borenstein, 98]
 - Extended Potential Fields [Khatib & Chatila, 95]

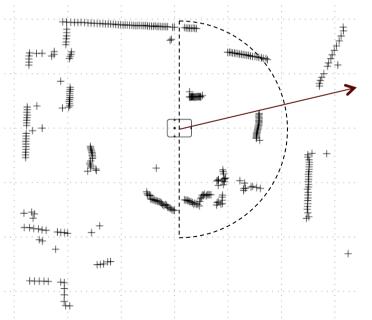
Collision Avoidance

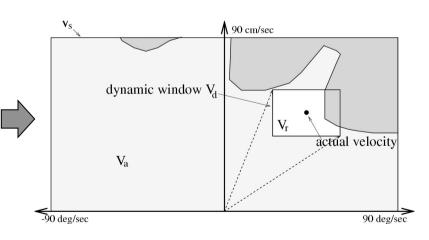
- Integration into general motion planning?
- It is common to subdivide the problem into a global and local planning task:
 - An approximate global planner computes paths ignoring the kinematic and dynamic vehicle constraints
 - An accurate local planner accounts for the constraints and generates (sets of) feasible local trajectories ("collision avoidance")
- What do we loose? What do we win?

Two-layered Architecture



- Given: path to goal (a set of via points), range scan of the local vicinity, dynamic constraints
- Wanted: collision-free, safe, and fast motion towards the goal

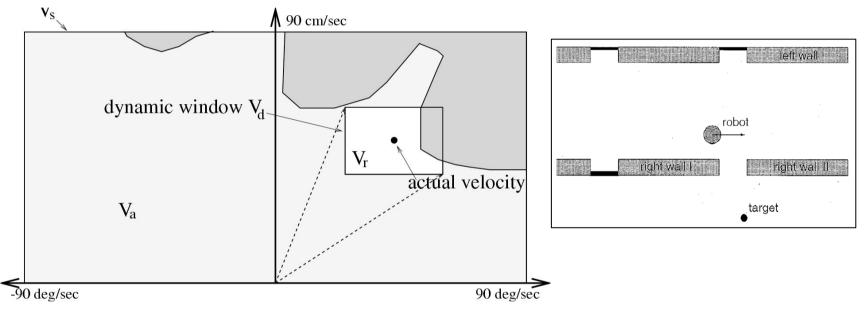




- Assumption: robot takes motion commands of the form (ν,ω)
- This is saying that the robot moves (instantaneously) on circular arcs with radius r = v/ω
- **Question:** which (*v*,ω)'s are
 - reasonable: that bring us to the goal?
 - admissible: that are collision-free?
 - reachable: under the vehicle constraints?

DWA Search Space

• 2D velocity search space



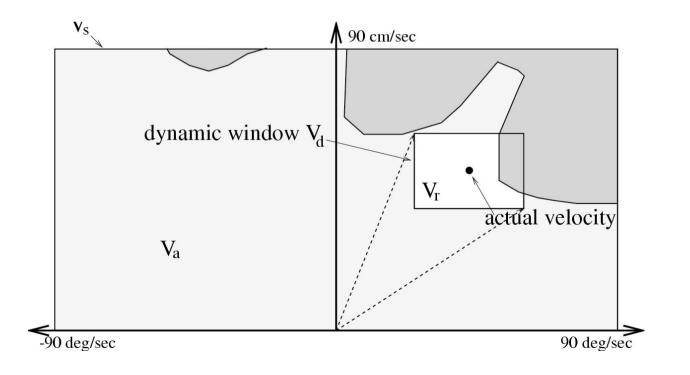
- V_s = all possible speeds of the robot
- V_a = obstacle free area
- V_d = speeds reachable within one time frame given acceleration constraints

$$Space = V_s \cap V_a \cap V_d$$

Reachable Velocities

Speeds are reachable if

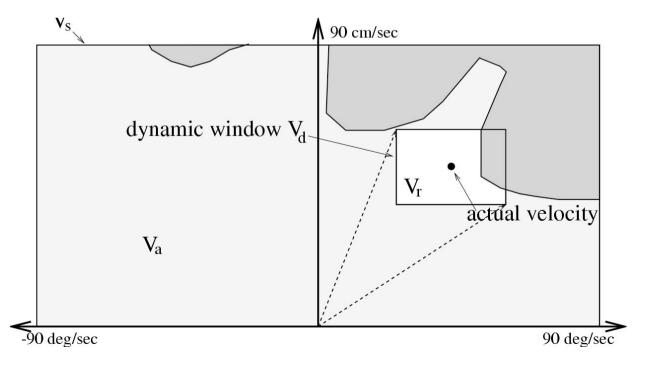
$$V_d = \{ (v, \omega) \mid v \in [v - a_{trans}t, v + a_{trans}t] \land \\ \omega \in [\omega - a_{rot}t, \omega + a_{rot}t] \}$$



Admissible Velocities

Speeds are admissible if

$$V_a = \{(v, \omega) \mid v \leq \sqrt{2 \operatorname{dist}(v, \omega) a_{trans}} \land \omega \leq \sqrt{2 \operatorname{dist}(v, \omega) a_{rot}} \}$$



- How to choose (v,ω) ?
- Pose the problem as an optimization problem of an objective function within the dynamic window, search the maximum
- The objective function is a heuristic navigation function
- This function encodes the incentive to minimize the travel time by "driving fast and safe in the right direction"

- Heuristic navigation function
- Planning restricted to (v,ω)-space
- Here: assume to have precomputed goal distances from NF1 algorithm

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

89

- Heuristic navigation function
- Planning restricted to (v,ω)-space
- Here: assume to have precomputed goal distances from NF1 algorithm

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$
Maximizes
velocity

90

- Heuristic navigation function
- Planning restricted to (v,ω)-space
- Here: assume to have precomputed goal distances from NF1 algorithm

Navigation Function: [Brock & Khatib, 99]

$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$
Maximizes
velocity
Rewards alignment
to NF1/A* gradient

91

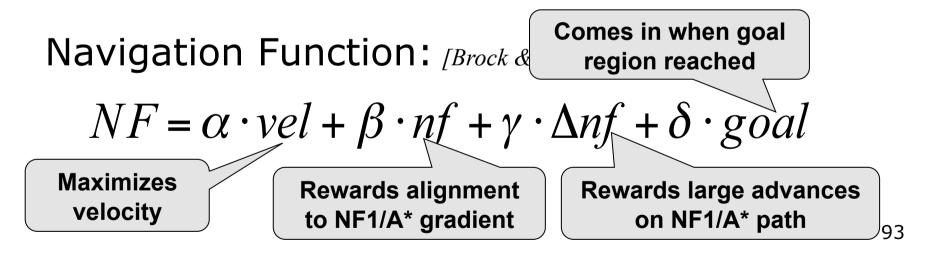
- Heuristic navigation function
- Planning restricted to (v,ω)-space
- Here: assume to have precomputed goal distances from NF1 algorithm

Navigation Function: [Brock & Khatib, 99]

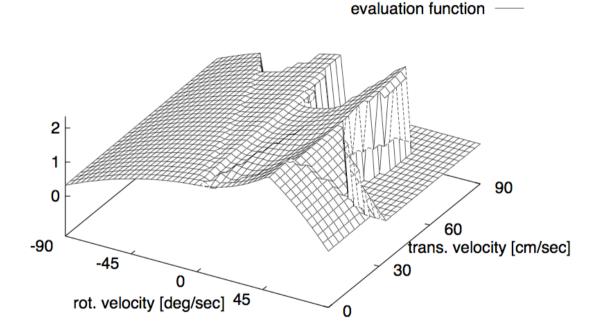
$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

Maximizes
velocity
Rewards alignment
to NF1/A* gradient
Rewards large advances
on NF1/A* path

- Heuristic navigation function
- Planning restricted to (v,ω)-space
- Here: assume to have precomputed goal distances from NF1 algorithm

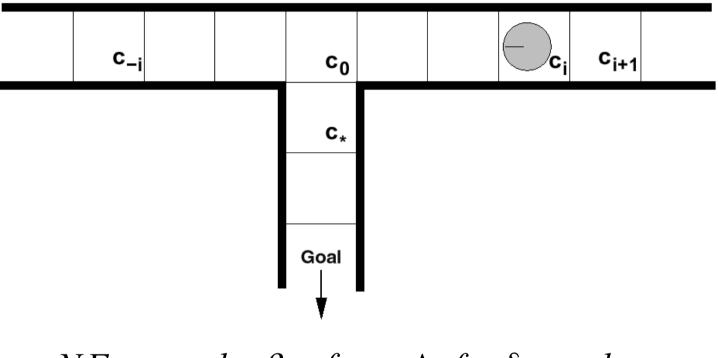


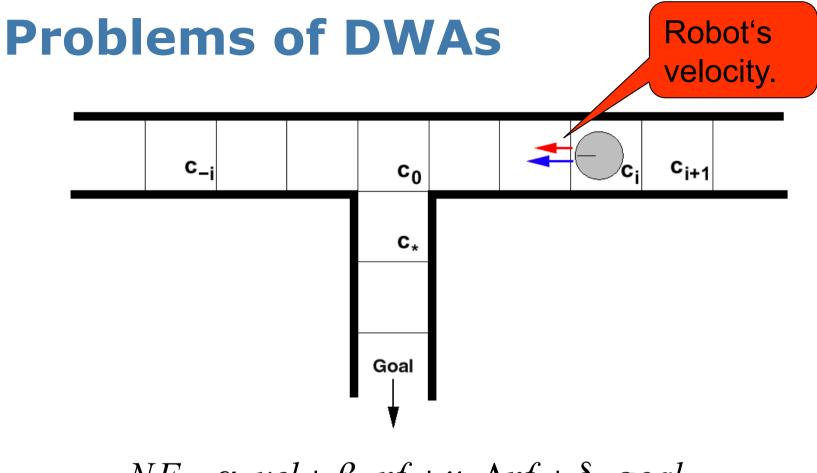
Navigation function example

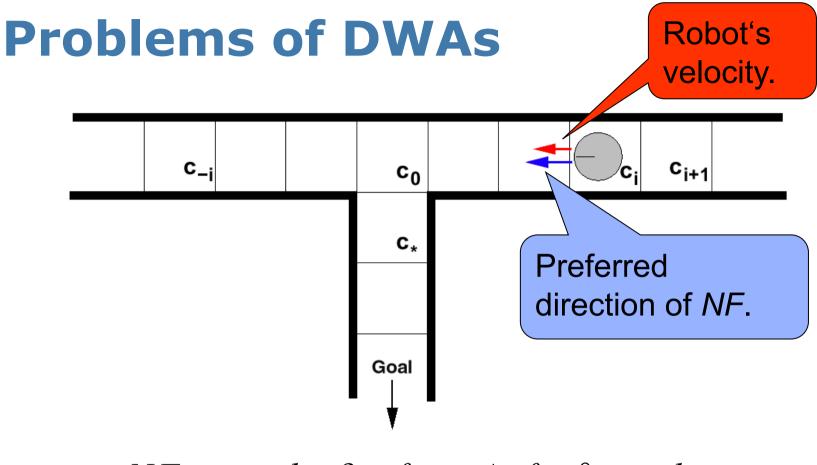


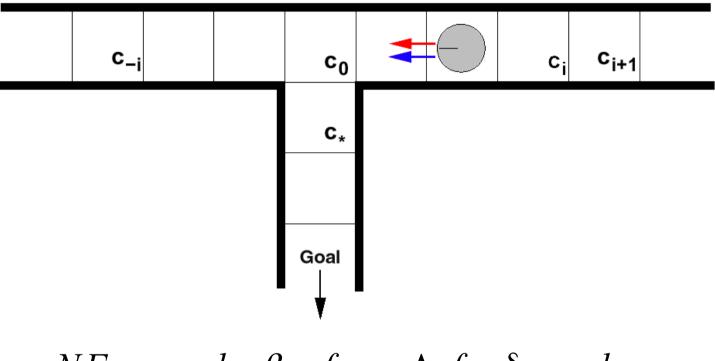
- Now perform search/optimization
- Find maximum

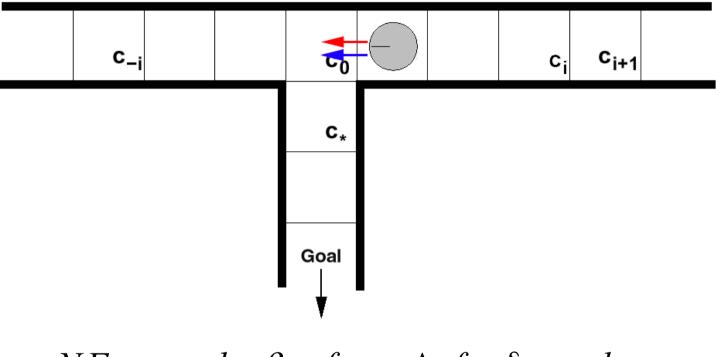
- Reacts quickly at low CPU requirements
- Guides a robot on a collision free path
- Successfully used in many real-world scenarios
- Resulting trajectories sometimes suboptimal
- Local minima might prevent the robot from reaching the goal location (regular DWA)
- Global DWA with NF1 overcomes this problem

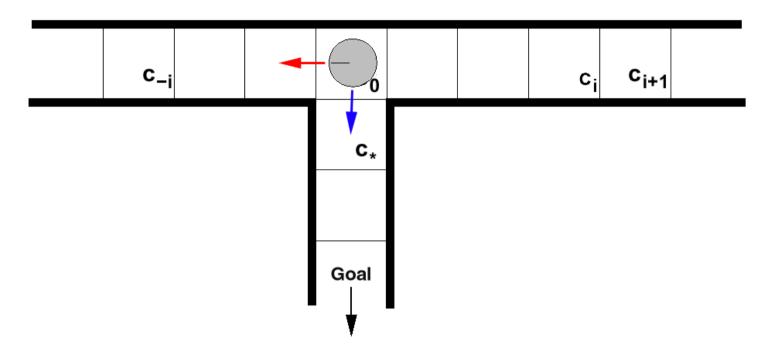






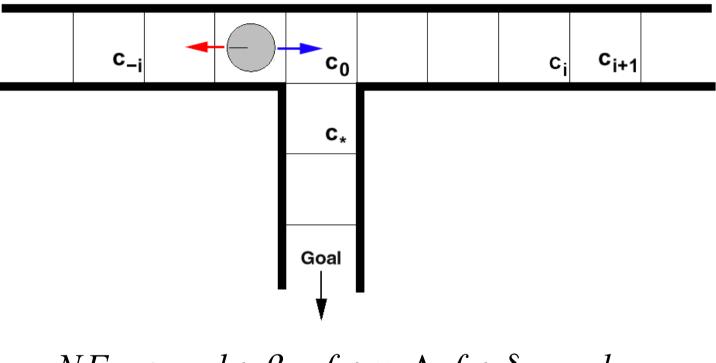


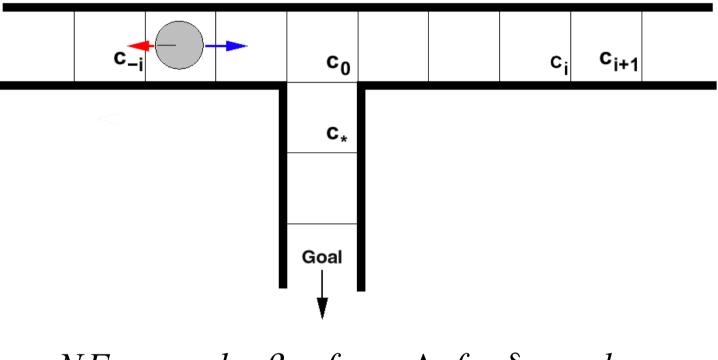


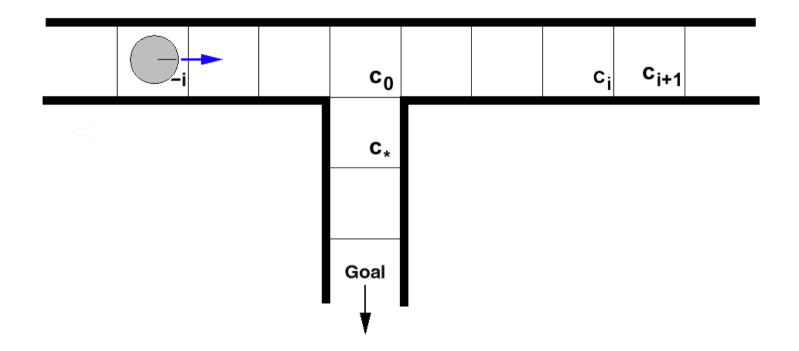


$$NF = \alpha \cdot vel + \beta \cdot nf + \gamma \cdot \Delta nf + \delta \cdot goal$$

The robot drives too fast at c_0 to enter corridor facing south.

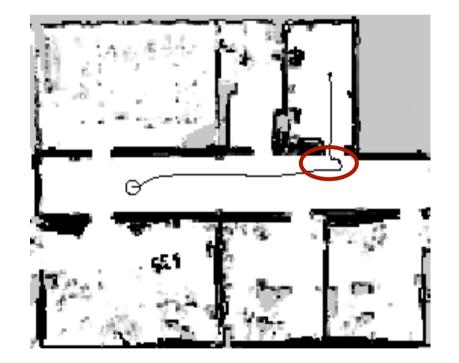






- Same situation as in the beginning
- → DWAs have problems to reach the goal

Typical problem in a real world situation:



 Robot does not slow down early enough to enter the doorway.

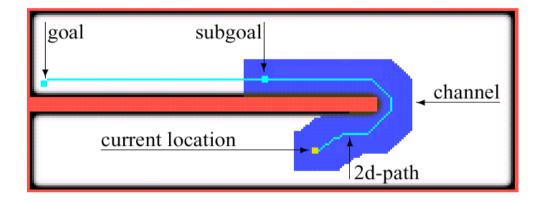
Alternative: 5D-Planning

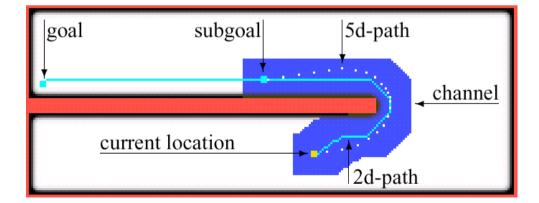
- Plans in the **full** <*x*,*y*,*θ*,*v*,ω>-configuration space using A*
 - Considers the robot's kinematic constraints
- Idea: search in the discretized
 <*x*,*y*,*θ*,*v*,ω>-space
- Problem: search space too large to be explored in real-time
- Solution: restrict the full search space to "channels"

5D-Planning

- Use A* to find a trajectory in the 2D
 <x,y >-space
- Choose a subgoal lying on the 2D-path within the channel
- Use A* in the "channel" 5D-space to find a sequence of steering commands to reach the subgoal

5D-Planning Example





Summary (1 of 3)

- Motion planning lives in the C-space
- Combinatorial planning methods scale poorly with C-space dimension and nonlinearity but are complete and optimal
- Sampling-based planning methods have weaker guarantees but are more efficient
- They all produce a road map that captures the connectivity of the C-space
- For planning on the road map, use heuristic search methods such as A*

Summary (2 of 3)

- Deterministic value iteration or Dijkstra yields the **optimal heuristic** for A*.
 Precompute if on-line replanning is likely
- A* in smoothed grid maps helps to keep the robot **away** from obstacles
- Any-angle A* methods produce shorter paths with fewer heading changes
- D*/D* Lite avoids replanning from scratch and finds the (usually few) nodes to be updated for on-line replanning

Summary (3 of 3)

- In highly dynamic environments, reactive collision avoidance methods that account for the kinematic and dynamics vehicle constraints become necessary
- Decoupling into an approximative global and an accurate local planning problem, integration using a layered architecture
- The Dynamic Window Approach optimizes a navigation function to trade off feasible, reasonable, and admissible motions

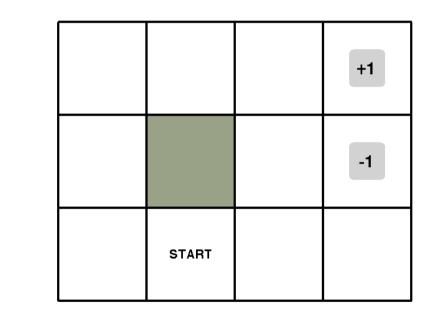
Uncertain Path Execution

- Have you ever become lost while trying to follow a path (e.g. printed out from Google maps)?
- Problem: path execution is inherently uncertain!

- Even the best **path** is worthless if the robot is unable to follow it
- Reasons: Underlying trajectoriy controller, DWA, imperfect models of map/dynamics
 - ➔ Instead of a plan, you need a policy

Markov Decision Process

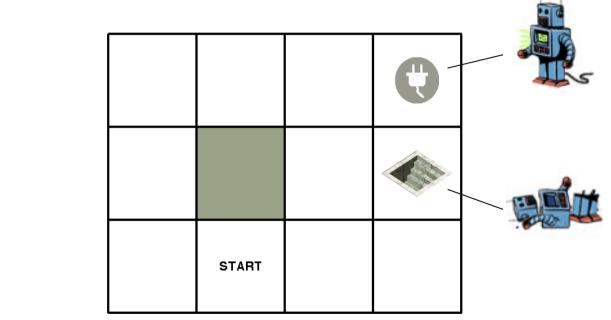
 Consider an agent acting in this environment



 Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

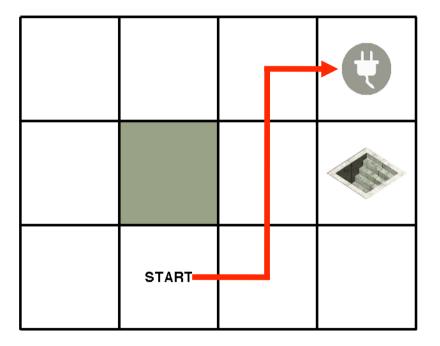
 Consider an agent acting in this environment



 Its mission is to reach the goal marked by +1 avoiding the cell labelled -1

Markov Decision Process

Easy! Use a search algorithm such as A*



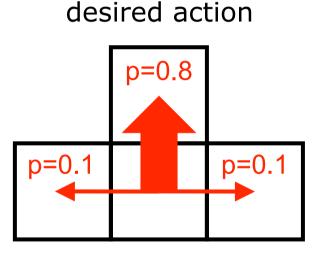
 Best solution (shortest path) is the action sequence [Right, Up, Up, Right]

What is the problem?

- Consider a non-perfect system in which actions are performed with a probability less than 1
- What are the best actions for an agent under this constraint?
- Example: a mobile robot does not exactly perform a desired motion
- Example: human navigation

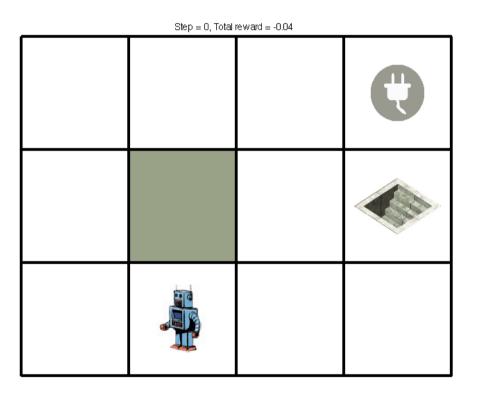
Uncertainty about performing actions!

 Consider the non-deterministic transition model (N / E / S / W):

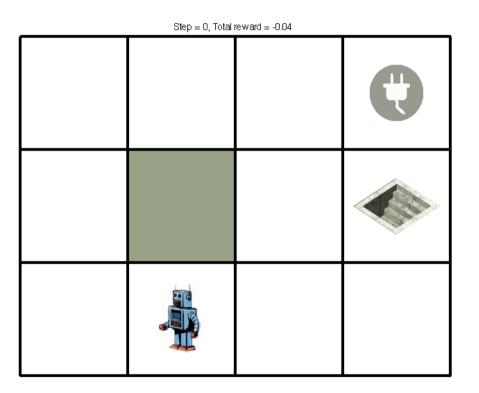


- Intended action is executed with p=0.8
- With p=0.1, the agent moves left or right
- Bumping into a wall "reflects" the robot

Executing the A* plan in this environment

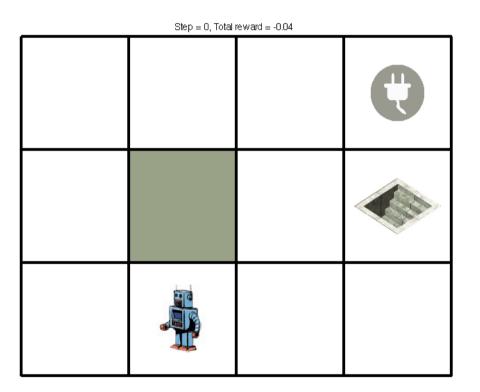


Executing the A* plan in this environment



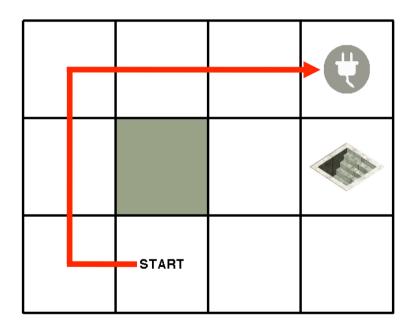
But: transitions are non-deterministic!

Executing the A* plan in this environment



This will happen sooner or later...

 Use a longer path with lower probability to end up in cell labelled -1



- This path has the highest overall utility
- Probability 0.8⁶ = 0.2621

Transition Model

 The probability to reach the next state s' from state s by choosing action a

T(s, a, s')

is called **transition model**

Markov Property:

The transition probabilities from *s* to *s'* **depend only on the current state** *s* and not on the history of earlier states

Reward

- In each state s, the agent receives a reward R(s)
- The reward may be positive or negative but must be bounded
- This can be generalized to be a function *R(s,a,s')*. Here: consider only *R(s)*, does not change the problem

Reward

- In our example, the reward is -0.04 in all states (e.g. the cost of motion) except the terminal states (that have rewards +1/-1)
- A negative reward gives agent an incentive to reach the goal quickly
- Or: "living in this environment is not enjoyable"

-0.04	-0.04	-0.04	+1
-0.04		-0.04	-1
-0.04	-0.04	-0.04	-0.04

MDP Definition

- Given a sequential decision problem in a fully observable, stochastic environment with a known Markovian transition model
- Then a Markov Decision Process is defined by the components
 - Set of states: S
 - Set of actions: A
 - Initial state: s_0
 - Transition model: T(s, a, s')
 - Reward funciton: R(s)

Policy

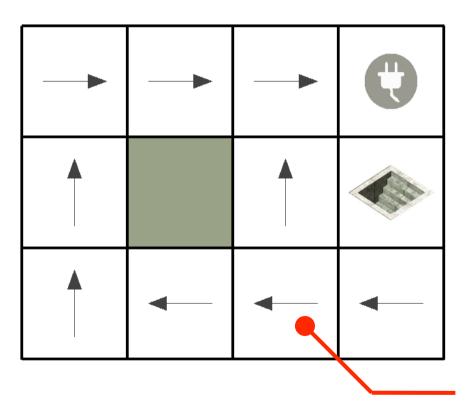
- An MDP solution is called **policy** π
- A policy is a mapping from states to actions

 $policy: States \mapsto Actions$

- In each state, a policy tells the agent what to do next
- Let $\pi(s)$ be the *action* that π specifies for s
- Among the many policies that solve an MDP, the **optimal policy** π* is what we seek. We'll see later what *optimal* means

Policy

The optimal policy for our example

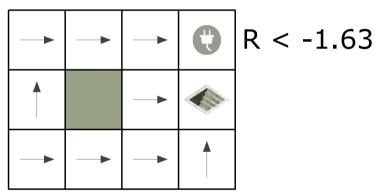


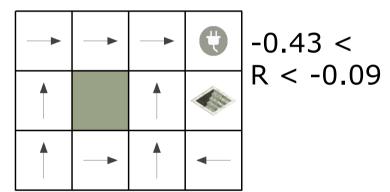
Conservative choice

Take long way around as the cost per step of -0.04 is small compared with the penality to fall down the stairs and receive a **-1** reward

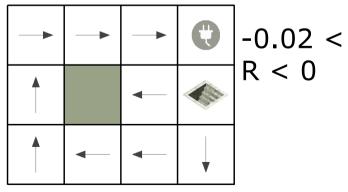
Policy

 When the balance of risk and reward changes, other policies are optimal



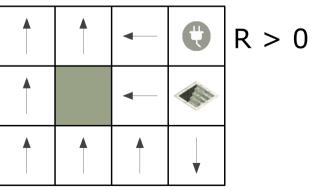


Leave as soon as possible



No risks are taken

Take shortcut, minor risks



Never leave (inf. #policies)

Utility of a State

- The utility of a state U(s) quantifies the benefit of a state for the overall task
- We first define U^π(s) to be the expected utility of all state sequences that start in s given π

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s\right]$$

U(s) evaluates (and encapsulates) all possible futures from s onwards

Utility of a State

With this definition, we can express U^π(s) as a function of its next state s'

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s\right]$$

= $E\left[R(s_0) + R(s_1) + R(s_2) + \dots \mid \pi, s_0 = s\right]$
= $E\left[R(s_0) \mid s_0 = s\right] + E\left[R(s_1) + R(s_2) + \dots \mid \pi\right]$
= $R(s) + E\left[\sum_{t=0}^{\infty} R(s_t) \mid \pi, s_0 = s'\right]$
= $R(s) + U^{\pi}(s')$

Optimal Policy

- The utility of a state allows us to apply the Maximum Expected Utility principle to define the optimal policy π*
- The optimal policy π* in s chooses the action a that maximizes the expected utility of s (and of s')

$$\pi^*(s) = \operatorname{argmax}_a E\left[U^{\pi}(s)\right]$$

Expectation taken over all policies

Optimal Policy

• Substituting $U^{\pi}(s)$

$$\pi^{*}(s) = \operatorname{argmax}_{a} E\left[U^{\pi}(s)\right]$$
$$= \operatorname{argmax}_{a} E\left[R(s) + U^{\pi}(s')\right]$$
$$= \operatorname{argmax}_{a} E\left[R(s)\right] + E\left[U^{\pi}(s')\right]$$
$$= \operatorname{argmax}_{a} E\left[U(s')\right]$$
$$= \operatorname{argmax}_{a} \sum_{s'} T(s, a, s') U(s')$$

Recall that *E[X]* is the weighted average of all possible values that *X* can take on

Utility of a State

• The **true utility of a state** U(s) is then obtained by application of the optimal policy, i.e. $U^{\pi^*}(s) = U(s)$. We find

$$U(s) = \max_{a} E \left[U^{\pi}(s) \right]$$

=
$$\max_{a} E \left[R(s) + U^{\pi}(s') \right]$$

=
$$\max_{a} E \left[R(s) \right] + E \left[U^{\pi}(s') \right]$$

=
$$R(s) + \max_{a} E \left[U(s') \right]$$

=
$$\frac{R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')}{\sum_{s'} T(s, a, s') U(s')}$$

Utility of a State

This result is noteworthy:

$$U(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')$$

We have found a direct relationship between the **utility of a state** and the **utility of its neighbors**

The utility of a state is the immediate reward for that state plus the expected utility of the next state, provided the agent chooses the optimal action

Bellman Equation

$$U(s) = R(s) + \max_{a} \sum_{s'} T(s, a, s') U(s')$$

- For each state there is a Bellman equation to compute its utility
- There are *n* states and *n* unknowns
- Solve the system using Linear Algebra?
- No! The max-operator that chooses the optimal action makes the system nonlinear
- We must go for an iterative approach

Discounting

We have made a **simplification** on the way:

 The utility of a state sequence is often defined as the sum of **discounted** rewards

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \underline{\gamma^{t}} R(s_{t}) \mid \pi, s_{0} = s\right]$$

with $0 \le \gamma \le 1$ being the *discount factor*

- Discounting says that future rewards are less significant than current rewards. This is a natural model for many domains
- The other expressions change accordingly

Separability

We have made an **assumption** on the way:

- Not all utility functions (for state sequences) can be used
- The utility function must have the property of separability (a.k.a. station-arity), e.g. additive utility functions: $U([s_0 + s_1 + \ldots + s_n]) = R(s_0) + U([s_1 + \ldots + s_n])$
- Loosely speaking: the preference between two state sequences is unchanged over different start states

Utility of a State

The state utilities for our example

0.812	0.868	0.918	+1
0.762		0.66	-1
0.705	0.655	0.611	0.388

 Note that utilities are higher closer to the goal as fewer steps are needed to reach it

Iterative Computation

Idea:

The utility is computed iteratively:

$$U_{i+1}(s) \leftarrow R(s) + \max_{a} \sum_{s'} T(s, a, s') U_i(s')$$

- Optimal utility: $U^* = \lim_{t \to \infty} U_t$
- Abort, if change in utility is below a threshold

Dynamic Programming

- The utility function is the basis for Dynamic Programming
- Fast solution to compute *n*-step decision problems
- Naive solution: $O(|A|^n)$
- Dynamic Programming: O(n |A| |S|)
- But: what is the correct value of n?
- If the graph has loops: $n \to \infty$

The Value Iteration Algorithm

Algorithm 1: Value Iteration

In: An MDP with

- States and action sets S, A,
- Transition model T(s, a, s'),
- Reward function R(s),
- Discount factor γ

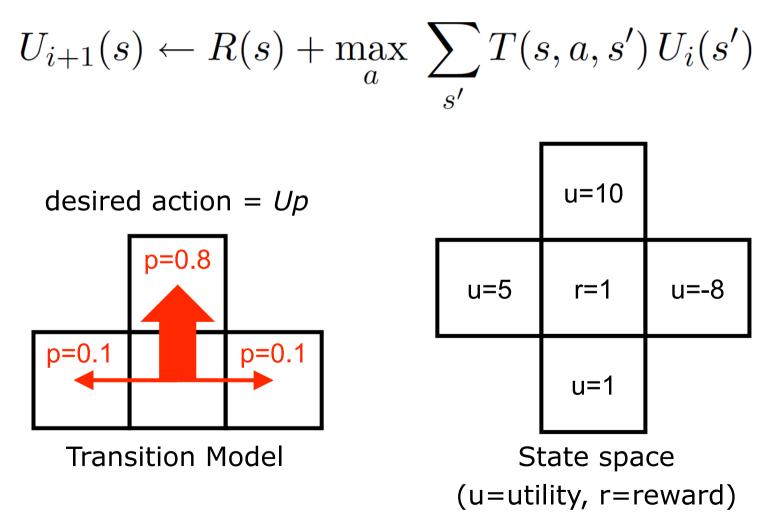
Out: The utility of all states U

 $U' \leftarrow 0$ repeat

```
| \begin{array}{c} U \leftarrow U' \\ \text{for each state s in S do} \\ | \begin{array}{c} U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s') \\ \text{end} \\ \text{until } close-enough(U, U') \\ \text{return } U \end{array}
```

Value Iteration Example

Calculate utility of the center cell



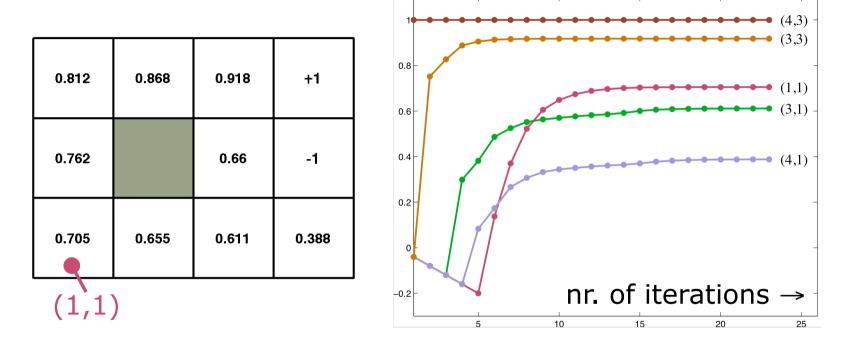
Value Iteration Example

$$U_{i+1}(s) \leftarrow R(s) + \max_{a} \sum_{s'} T(s, a, s') U_i(s')$$

				=	reward + max{
		u=10			$0.1 \cdot 1 + 0.8 \cdot 5 + 0.1 \cdot 10 (\leftarrow),$
ſ				1	$0.1 \cdot 5 + 0.8 \cdot 10 + 0.1 \cdot -8$ (†),
	u=5	r=1	u=-8		$0.1 \cdot 10 + 0.8 \cdot -8 + 0.1 \cdot 1 (\rightarrow),$
					$0.1 \cdot -8 + 0.8 \cdot 1 + 0.1 \cdot 5 (\downarrow)$
		u=1		=	$1 + \max\{5.1(\leftarrow), 7.7(\uparrow),$
					$-5.3 \left(ightarrow ight), 0.5 \left(\downarrow ight) ight\}$
				=	1 + 7.7
				=	8.7

Value Iteration Example

In our example



 States far from the goal first accumulate negative rewards until a path is found to the goal

Convergence

The condition close-enough(U, U') in the algorithm can be formulated by

$$RMS = \frac{1}{|S|} \sqrt{\sum_{s} (U(s) - U'(s))^2}$$

 $RMS(U, U') < \epsilon$

- Different ways to detect convergence:
 - RMS error: root mean square error
 - Max error: $||U U'|| = \max |U(s) U'(s)|$
 - Policy loss

Convergence Example



- What the agent cares about is **policy loss**: How well a policy based on U_i(s) performs
- Policy loss converges much faster (because of the argmax)

Value Iteration

- Value Iteration finds the **optimal solution** to the Markov Decision Problem!
- **Converges** to the **unique solution** of the Bellman equation system for $\gamma < 1$
- Initial values for U' are arbitrary
- Proof involves the concept of *contraction*. $||B U_i - B U'_i|| \le \gamma ||U_i - U'_i||$ with *B* being the Bellman operator (see textbook)
- VI propagates information through the state space by means of **local updates**

Optimal Policy

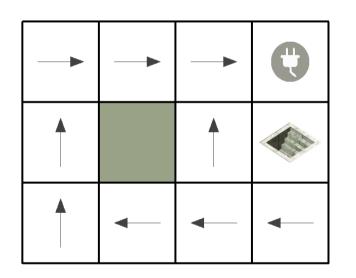
 How to finally compute the **optimal policy**? Can be easily extracted along the way by

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

Note: U(s) and R(s) are quite different quantities. R(s) is the short-term reward for being in s, whereas U(s) is the longterm reward from s onwards

Optimal Policy

Examples



1	→		Ļ	Ļ						-	Ļ		1	1	()	↓	
1	†	1	Ļ	Ļ	+	Ļ	Ļ	+	-	Ļ	→		1	1		Ļ	
1	1		+	→			4	-		-	Ļ		^	1		→	
Ť	1		Ļ	Ļ	+		1			↓	↓		1	1		Ļ	
			-	+						→						→	
1	+	-	Ļ	Ļ		+				+	→	→	+			↓	
1	Ļ	→		-		→		-		-	Ļ	-	Ļ	↓		→	
1	+	ł	¥	┥	Ļ	ł	Ļ	ł	Ļ	↓	↓	↓	ł	ł		Ļ	
1	Ļ															→	
1	→	+	Ļ	Ļ		+				+	↓		+	-		Ļ	
1	Ļ	→	-+			→		-		→	Ļ	→	Ļ	↓		→	
1	-		Ļ	Ļ						-	→	-	→			+	
1	→	→	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	↓	ł	↓	ł	Ļ	Ļ	┥	
^	G	Ļ	↓	┥		1	1	1	1	1	1		1	1	1	1	

Summary

- MDPs describe an uncertain agent with a stochastic transition model
- The solution is called **policy** that is a mapping from **states to actions**
- Value Iteration is a instance of dynamic programming, converges for lower-thanone discounts or finite horizons
- A policy allows to implement a feedback control strategy, the robot can never become lost anymore

What's missing...?

- Good solutions to jointly plan the path under local constraints that overcome the decoupling of global and local planning
- Good solutions to implement feasible feedback control strategies
- Problem: the curse of dimensionality
- AI/planning people and control theory people need to talk more
- Hence, the robot motion planning problem is not fully solved yet, but good solutions for many practical problems exist