
Wolfram Burgard, Cyrill Stachniss, 

Maren Bennewitz, Kai Arras 

EKF Localization 

Introduction to 
Mobile Robotics 

Slides by Kai Arras and Wolfram Burgard 
Last update: June 2010 



Localization 

•  Given  
•  Map of the environment. 
•  Sequence of sensor measurements. 

•  Wanted 
•  Estimate of the robot’s position. 

•  Problem classes 
•  Position tracking 
•  Global localization 
•  Kidnapped robot problem (recovery) 

“Using sensory information to locate the robot 
in its environment is the most fundamental 
problem to providing a mobile robot with 
autonomous capabilities.”                 [Cox ’91] 



Landmark-based Localization 

EKF Localization: Basic Cycle 
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Landmark-based Localization 

EKF Localization: Basic Cycle 
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Landmark-based Localization 

EKF Localization: Basic Cycle 
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State Prediction (Odometry) 

Landmark-based Localization 
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Control uk: wheel displacements sl , sr 

Error model: linear growth 

Nonlinear process model  f : 



State Prediction (Odometry) 

Landmark-based Localization 
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Control uk: wheel displacements sl , sr 

Error model: linear growth 

Nonlinear process model  f : 



Landmark-based Localization 

Landmark Extraction (Observation) 
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Extracted 
lines 

Hessian line model 

Extracted lines 
in model space 
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Landmark-based Localization 

Measurement Prediction 

•  ...is a coordinate frame transform world-to-sensor 

•  Given the predicted state (robot pose), 
predicts the location     and location 
uncertainty               of expected 
observations in sensor coordinates 
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model space 



Data Association (Matching) 

•  Associates predicted measurements 
with observations 

•  Innovation 
and innovation 
covariance 

•  Matching on 
significance 
level alpha 

Landmark-based Localization 
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model space 

Green: observation 
Magenta: measurement prediction 



Landmark-based Localization 

Update 

•  Kalman gain 

•  State update (robot pose) 

•  State covariance update 
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Red: posterior estimate 



•  EKF Localization with Point Features 

Landmark-based Localization 



1.   EKF_localization ( µt-1, Σt-1, ut, zt, m): 
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1.   EKF_localization ( µt-1, Σt-1, ut, zt, m): 

Correction: 
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EKF Prediction Step 



EKF Observation Prediction Step 



EKF Correction Step 



Estimation Sequence (1) 



Estimation Sequence (2) 



Comparison to GroundTruth 



•  [Arras et al. 98]:  

•  Laser range-finder and vision 

•  High precision (<1cm accuracy) 

Courtesy of K. Arras 

EKF Localization Example 



EKF Localization Example 

• Line and point landmarks 



EKF Localization Example 

• Line and point landmarks 



EKF Localization Example 
•  Expo.02: Swiss National Exhibition 2002 
•  Pavilion "Robotics" 
•  11 fully autonomous robots 
•  tour guides, entertainer, photographer 
•  12 hours per day 
•  7 days per week 
•  5 months 

•  3,316 km travel distance 
•  almost 700,000 visitors 
•  400 visitors per hour 

•  Localization method: Line-Based EKF 



EKF Localization Example 
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Global EKF Localization 

Interpretation tree 
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Global EKF Localization 

Env. Dynamics 
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Global EKF Localization 
Geometric constraints we can exploit 

Location independent constraints 

Unary constraint: 
intrinsic property of feature 
e.g. type, color, size 

Binary constraint: 
relative measure between features 
e.g. relative position, angle 

All decisions on a significance level α 
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Global EKF Localization 

Interpretation Tree 
[Grimson 1987], [Drumheller 1987], 
[Castellanos 1996], [Lim 2000] 

Algorithm 

•  backtracking 
•  depth-first 
•  recursive 
•  uses geometric constraints 
•  worst-case exponential 

complexity 
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Global EKF Localization 

Pygmalion 

α = 0.95 ,   p = 2 
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Global EKF Localization 

α = 0.95 ,   p = 3 

Pygmalion 
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Global EKF Localization 

α = 0.95 ,   p = 4 texe: 633 ms 
PowerPC at 300 

MHz 

Pygmalion 
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Global EKF Localization 

α = 0.95 ,   p = 5 

texe: 633 ms (PowerPC at 300 MHz) 

Pygmalion 



05.07.02, 17.23 h 

Global EKF Localization 

α = 0.999 

At Expo.02 

[Arras et al. 03] 



texe = 105 ms 

05.07.02, 17.23 h 

Global EKF Localization 

α = 0.999 

At Expo.02 

[Arras et al. 03] 



05.07.02, 17.32 h 

Global EKF Localization 

α = 0.999 

At Expo.02 

[Arras et al. 03] 



05.07.02, 17.32 h 

Global EKF Localization 

α = 0.999 texe = 446 ms 

At Expo.02 

[Arras et al. 03] 



EKF Localization Summary 

•  EKF localization implements pose tracking 

•  Very efficient and accurate 
(positioning error down to subcentimeter) 

•  Filter divergence can cause lost situations from 
which the EKF cannot recover 

•  Industrial applications 

•  Global EKF localization can be achieved using 
interpretation tree-based data association 

•  Worst-case complexity is exponential 

•  Fast in practice for small maps 


