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Vectors

= Arrays of numbers

= They represent a point in a n dimensional
space
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Vectors: Scalar Product

= Scalar-Vector Product k - a
= Changes the length of the vector, but not

its direction
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Vectors: Sum

= Sum of vectors (is commutative)
(a1 (b)) [br)  [a1)

an _ | b2 an
+| S (= 7|+

o) \on) o) \an)

= Can be visualized as “chaining” the vectors.




Vectors: Dot Product

= Inner product of vectors (is a scalar)
a-b:b-a:Zai-bi
)

= If one of the two vectors a has|la|| =1 the
inner product a- b returns the length of the
projection of b along the direction of a

» Ifa-b=0 the two
vectors are
orthogonal




Vectors: Linear (In)Dependence

= A vector b is linearly dependent from
{ag,an,...;an}if b=) k; - a

= In other words if b can be obtained by
summing up the a; properly scaled.

= If there exists no {k;} such that b=) k;-a;
then b is mdependent from{a;} ’
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Vectors: Linear (In)Dependence

= A vector b is linearly dependent from
{ag,an,...;an}if b=) k; - a

= In other words if b can be obtained by
summing up the a; properly scaled.

= If there exists no {k;} such that b=> k;-a;

then b is mdependent from {a;} v
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Matrices

= A matrix is written as a table of values
= Can be used in many ways:

(a11 a12 -+ aim )
A= | 921 @22 - a2

\anl aAn2 - anm)



Matrices as Collections of
Vectors

= Column vectors

(a*l Ay a*’m)
([a11] [a12] -+ |a1m| )
A = | |@21]|a22| - jazm

\anl Ap2| - anm/




Matrices as Collections of
Vectors

= Row Vectors

T
(a1l a12 -+ aimP /a%*\
A — | @21 a22 --- a2m A0

\on1 @nz + anml}—\ af,



Matrices Operations

= Sum (commutative, associative)
= Product (not commutative)

= Inversion (square, full rank)

= Transposition

= Multiplication by a scalar

= Multiplication by a vector



Matrix Vector Product

= The j-th component of A -bis the dot
producta;, - b.

= The vector A -b is linearly dependent
from {a,;} with coefficients {b;} .
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Matrix Vector Product

= If the column vectors represent a
reference system, the product A -b
computes the global transformation of
the vector b according to {a,;}
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Matrix Vector Product

= Each a;; can be seen as a linear
mixing coefficient that tells how it
contributes to (A - b),.

= Example: Jacobian of a multi-
dimensional function

(dfy dfy o dfy )
(fl(X) \ dr1 dxo dxm
f (X) df, dip,  dfp
y = f(x) = 25 Jp=| dor dws dzm
f(x df,  df, df,
\ n( )) \dazl dxo da:m)
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Matrix Matrix Product
= Can be defined through

= the dot product of row and column vectors

= the linear combination of the columns of A
scaled by the coefficients of the columns of B.

C = A-B
T T T
( a%* by a%* byo .- a%* bam )
— A0y b1 A0y b.o - Ay bim
\ ahs-by1 ah b oo ah, - bum

(A-b*l A - b, ...A-b*m)



Matrix Matrix Product

= If we consider the second interpretation we
see that the columns of C are the
projections of the columns of B through A.

= All the interpretations made for the matrix
vector product hold.

C = A-B
— (A-b*l A b, ...A-b*m>
Cyi = A-by
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Linear Systems

Ax =D

= Interpretations:

= Find the coordinates x in the reference system
of A such that b is the result of the
transformation of Ax.

= Many efficient solvers
= Conjugate gradients
= Sparse Cholesky Decomposition (if SPD)
= The system may be over or under constrained.

= One can obtain a reduced system (A" b’) by
considering the matrix (A b) and suppressing

all the rows which are linearly dependent. .



Linear Systems

= The system is over-constrained if the
number of linearly independent columns
(or rows) of A’ is greater than the
dimension of b”.

= An over-constrained system does not
admit a solution, however one may find a
minimum norm solution by pseudo
Inversion

x = argmin [[A’x — b/|| = (A" AN 1A b
X
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Linear Systems

= The system is under-constrained if the
number of linearly independent
columns (or rows) of A’ is greater
than the dimension of b’.

= An under-constrained admits infinite
solutions. The degree of infinity is
rank(A’)-dim(b’).

= The rank of a matrix is the maximum

number of linearly independent rows
or columns.
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Matrix Inversion
AB =1

= If A is a square matrix of full rank, then
there is a unique matrix B=A-1 such that

the above equation holds.

= The ith row of A is and the jt" column of A-1
are:
= orthogonal, ifi=j
= their scalar product is 1, otherwise.

= The jth column of A1 can be found by
solving the following system:

A_a_l S i : This is the i column
*1 *1 of the identity matrix
20




Trace

Only defined for square matrices

Sum of the elements on the main diagonal, that is
n

tr(A) = a1 +a2+ -+ apy = Zaii
1=1
It is a linear operator with the following properties
= Additivity: tr(4A+ B) =tr(A) + tr(B)
= Homogeneity: tr(c- A) = c-tr(A)
= Pairwise commutative: tr(AB)=tr(BA), tr(ABC) # tr(ACB)

Trace is similarity invariant tr(P~'AP) = tr((AP™')P) = tr(A)

Trace is transpose invariant tr(A) = tr(A")
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Rank

= Maximum number of linearly independent rows (columns)
= Dimension of the image of the transformation f(x) = Ax

= When A4 is m x n we have
= rank(4) > 0 and the equality holds iff A is the null matrix
= rank(A) < min(m,n)
= f(x) is injective iff rank(A) =n
= f(x) is surjective iff rank(A) =m
= ifm =n, f(x) is bijective and 4 is invertible iff rank(4) =n

= Computation of the rank is done by
= Perform Gaussian elimination on the matrix
= Count the number of non-zero rows
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Determinant

= Only defined for square matrices
= Remember? A-A~! =1 if and only if det(A) # 0

= For 2 x 2 matrices:

Let A = [a;;] and |A| = det(A), then

aij; ai2
a21 a22

= For 3 x 3 matrices:

i1, a1z, Qi3 |
ag1 Q22 23 |
a1 “ass “ass |

= aj11 - 22 — Aj12 - a21

11022033 + Q12023031 + 13021032

—a11023032 — 4120210433 — 4130220411
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Determinant

= For general n x n matrices?

Let A;; be the submatrix obtained from A
by deleting the i-th row and the j-th column

1 2 5 0
1 5 0
2 3 4 -1
—-5/8 0 0 - A (2)_42 _01
0 4 -2 0

Rewrite determinant for 3 x 3 matrices:
det(Asx3) = a11022a33 + 12023031 + 13021032
—a11023032 — 4120210433 — A13022011]

= a1 -det(Aq11) —ais - det(A12) + a13 - det(A;s)
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Determinant

= For general n x n matrices?

det(A) = andet(A11) — aradet(Ars) + ...+ (=1)'"ay, det(Aq,)
p— Z(—1)1+ja1jdet(A1j)
j=1

Let C;; = (—1)""7det(A;;) be the (ij)-cofactor, then

det(A) = a11C11 +a12C12 + ... +a1,C1p,
= 2_a;Cy
j=1
This is called the cofactor expansion across the first row.

25



Determinant

Problem: Take a 25 x 25 matrix (which is considered small).

The cofactor expansion method requires n! multiplications.
For n = 25, thisis 1.5 x 107”25 multiplications for which a
today supercomputer would take 500,000 years.

There are much faster methods, namely using Gauss
elimination to bring the matrix into triangular form

Then:

d
0
0
0

* * *
dg * X

0 d3 *

0 0 dy

det(A) = [T, d

Because for triangular matrices (with A being invertible),
the determinant is the product of diagonal elements
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Determinant: Properties

= Row operations (A still a n x n square matrix)

= If B results from A by interchanging two rows,
then det(B) = —det(A)

= If B results from A by multiplying one row with a number ¢,
then det(B) = ¢ - det(A)

= If B results from A by adding a multiple of one row to another
row, then det(B) = det(A)

Transpose: det(Al) = det(A)

Multiplication: det(A - B) = det(A) - det(B)

Does not apply to addition! det(A + B) # det(A) + det(B)
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Determinant: Applications

= Compute Eigenvalues
Solve the characteristic polynomial det(A — A-1) =0

= Area and Volume: area = |det(A)]

(a+c,b+d)

r1+r3

ri+r2+r3

>
1
—
o

|

(73 iS i-th row)

> 00 o

Q Q.
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Orthogonal matrix

= A matrix @ is orthogonal iff its column (row)
vectors represent an orthonormal basis

(1 =5 .

= As linear transformation, it is norm preserving,
and acts as an isometry in Euclidean space
(rotation, reflection)

= Some properties:
= The transpose is the inverse QQ' =Q"Q =1
= Determinant has unity norm (4 1)

1 =det(l) = det(QTQ) — det(Q)det(QT) = det(Q)2
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Rotational matrix

= Important in robotics

= 2D Rotations

= 3D Rotations along the main axes

0
cos(6)
sin(6)

R (0)

1
0
0

= IMPORTANT: Rotations are not commutative

[ 0.707
—0.5
0.5

0.707
0
0.707

| cos(f) —sin(0)
R(9) = [ sin(f)  cos(f) ]
0 cos(6)
— sin(0) R,(0) = { 0
cos(6) sin(6)
0 —0.707 ] - .
0.707 =05 |, Ro(5)-Ry(5):
0.707 05 i
—0.5 —0.5
0.707 —0.707 |, Ry(5)-Ra(5):
0.5 0.5

0
1
0

W N =

()

0

— sin(0) }
cos(6)

[ —1.414 ]
0.586
3.414

[ —1.793 |
0.707
3.207
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Matrices as Affine Transformations

= A general and easy way to describe a 3D
transformation is via matrices.

Translation Vector

(B = (e ()

Rotation Matrix

= Homogeneous behavior in 2D and 3D

= Takes naturally into account the non-
commutativity of the transformations
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Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)

Matrix A represents the pose of a robot in the space
Matrix B represents the position of a sensor on the robot

The sensor perceives an object at a given location p, in its own
frame [the sensor has no clue on where it is in the world]

Where is the object in the global frame?
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Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)

Matrix A represents the pose of a robot in the space
Matrix B represents the position of a sensor on the robot

The sensor perceives an object at a given location p, in its own
frame [the sensor has no clue on where it is in the world]

Where is the object in the global frame?

@  Bp gives me the pose of
the object wrt the robot

%
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Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)

Matrix A represents the pose of a robot in the space
Matrix B represents the position of a sensor on the robot

The sensor perceives an object at a given location p, in its own
frame [the sensor has no clue on where it is in the world]

Where is the object in the global frame?

Bp gives me the pose of
the object wrt the robot

ABp gives me the pose of
the object wrt the world

v
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Symmetric matrix

1 4 =2
= A matrix A is symmetricif A=A4" ,e.g.| 4 -1 3
-2 3 5)
0 4
= A matrix A4 is anti-symmetricif A=-4",e.q.| -4 0
2 =3

= Every symmetric matrix:

= can be diagonalizable D = QAQ?, where D is a diagonal
matrix of eigenvalues and () is an orthogonal matrix whose
columns are the eigenvectors of A

= define a quadratic form g(x) = xT Ax = zn: A T;T

iy,J=1
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Positive definite matrix

= The analogous of positive number

= Definition
= M >0iff V2#£0:2"Mz>0

= Examples
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Positive definite matrix

= Properties

Invertible, with positive definite inverse

All eigenvalues > 0

Traceis > 0

For any p.d. 4,447, AT 4 are positive definite
Cholesky decomposition 4= rL7
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Jacobian Matrix

= It's a non-square matrix » xm in general

= Suppose you have a vector-valued function

709 =] 13 |

= Let the gradient operator be the vector of

(first-order) partial derivatives

efined as

vx:[ ail 8(3:2 % ]T
= Then, the Jacobian matrix is C
- Of1
f1(x) ] o 9 o
F, = N A =
[ f2(X> [ ox1 Oz ] fs
— 8331

Of1
0x,,

Of2
0x,,
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Jacobian Matrix

= It’s the orientation of the tangent plane to the vector-
valued function at a given point

= Generalizes the gradient of a scalar valued function

= Heavily used for first-order error propagation
Cout =F- Cfm . FT

= See |later in the course
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Quadratic Forms

= Many important functions can be locally
approximated with a quadratic form.

1,] (

x1 Ax + bx 4+ ¢

= Often one is interested in finding the
minimum (or maximum) of a quadratic
form.

X = argmin f(x)
X



Quadratic Forms

= How can we use the matrix properties to
quickly compute a solution to this
minimization problem?

X = argmin f(x)
X

= At the minimum we have (X)) =0

= By using the definition of matrix product we
can compute f’

XTAX—l—bX—I—C
ATx—I—Ax—l—b

f(x)
ey
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Quadratic Forms

* The minimum of f(x) = x'Ax+bx+c iS where
its derivative is set to O

0 = Alx + Ax+ Db
= Thus we can solve the system
(AT 4+ A)x = -b

= If the matrix is symmetric, the system
becomes

2Ax = —b
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