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Vectors 
§  Arrays of numbers 
§  They represent a point in a n dimensional 

space 
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Vectors: Scalar Product 
§  Scalar-Vector Product 
§  Changes the length of the vector, but not 

its direction 
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Vectors: Sum 
§  Sum of vectors (is commutative) 

 

§  Can be visualized as “chaining” the vectors. 
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Vectors: Dot Product 
§  Inner product of vectors (is a scalar) 

§  If one of the two vectors    has          , the 
inner product       returns the length of the 
projection of    along the direction of 

§  If             the two 
vectors are 
orthogonal 
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§  A vector    is linearly dependent from                
    if  

§  In other words if     can be obtained by 
summing up the     properly scaled. 

§  If there exists no        such that                
then     is independent from 

Vectors: Linear (In)Dependence 
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Matrices 
§  A matrix is written as a table of values 
§  Can be used in many ways: 
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Matrices as Collections of 
Vectors 
§  Column vectors 
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Matrices as Collections of 
Vectors 
§  Row Vectors 
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Matrices Operations 
§  Sum (commutative, associative) 
§  Product (not commutative) 
§  Inversion (square, full rank) 
§  Transposition 
§  Multiplication by a scalar 
§  Multiplication by a vector 
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Matrix Vector Product 

§  The i-th component of       is the dot 
product       . 

§  The vector       is linearly dependent 
from        with  coefficients      . 
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Matrix Vector Product 

§  If the column vectors represent a 
reference system, the product 
computes the global transformation of 
the vector      according to 
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Matrix Vector Product 

§  Each       can be seen as a linear 
mixing coefficient that tells how it 
contributes to         . 

§  Example: Jacobian of a multi-
dimensional function  
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Matrix Matrix Product 
§  Can be defined through  

§  the dot product of row and column vectors 
§  the linear combination of the columns of A 

scaled by the coefficients of the columns of B. 
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Matrix Matrix Product 
§  If we consider the second interpretation we 

see that the columns of C are the 
projections of the columns of B through A. 

§  All the interpretations made for the matrix 
vector product hold. 
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Linear Systems 

§  Interpretations: 
§  Find the coordinates x in the reference system 

of A such that b is the result of the 
transformation of Ax. 

§  Many efficient solvers 
§ Conjugate gradients 
§ Sparse Cholesky Decomposition (if SPD) 
§ … 

§  The system may be over or under constrained. 
§  One can obtain a reduced system (A’ b’) by 

considering the matrix (A b) and suppressing 
all the rows which are linearly dependent. 
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Linear Systems 
§  The system is over-constrained if the 

number of linearly independent columns 
(or rows) of A’ is greater than the 
dimension of b’. 

§  An over-constrained system does not 
admit a solution, however one may find a 
minimum norm solution by pseudo 
inversion 
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Linear Systems 

§  The system is under-constrained if the 
number of linearly independent 
columns (or rows) of A’ is greater 
than the dimension of b’. 

§  An under-constrained admits infinite 
solutions. The degree of infinity is 
rank(A’)-dim(b’). 

§  The rank of a matrix is the maximum 
number of linearly independent rows 
or columns. 
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Matrix Inversion 

§  If A is a square matrix of full rank, then 
there is a unique matrix B=A-1 such that 
the above equation holds. 

§  The ith row of A is and the jth column of A-1 

are: 
§   orthogonal,  if i=j 
§   their scalar product is 1, otherwise. 

§  The ith column of A-1  can be found by 
solving the following system: 

This is the ith column 
of the identity matrix 
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§  Only defined for square matrices  
§  Sum of the elements on the main diagonal, that is 

§  It is a linear operator with the following properties  
§  Additivity:  
§  Homogeneity: 
§  Pairwise commutative: 

§  Trace is similarity invariant  

§  Trace is transpose invariant  

Trace 

b l a
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§  Maximum number of linearly independent rows (columns) 
§  Dimension of the image of the transformation 

§  When     is          we have 
§                     and the equality holds iff     is the null matrix  
§    
§         is injective iff  
§         is surjective iff 
§  if          ,        is bijective and    is invertible iff 

§  Computation of the rank is done by 
§  Perform Gaussian elimination on the matrix 
§  Count the number of non-zero rows 

Rank 

b l a
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§  Only defined for square matrices  
§  Remember?                    if and only if 
§  For         matrices: 

 Let               and                   , then 
 
 
 
 
§  For         matrices: 

Determinant 
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§  For general          matrices? 

 Let       be the submatrix obtained from  
by deleting the i-th row and the j-th column 

 
 
 
 
 

 Rewrite determinant for         matrices: 

Determinant 
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§  For general          matrices? 

Let                                 be the (i,j)-cofactor, then 
 
 
 
 
 
This is called the cofactor expansion across the first row.  

Determinant 
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§  Problem: Take a 25 x 25 matrix (which is considered small). 
The cofactor expansion method requires n! multiplications. 
For n = 25, this is 1.5 x 10^25 multiplications for which a 
today supercomputer would take 500,000 years. 

 
§  There are much faster methods, namely using Gauss 

elimination to bring the matrix into triangular form 

 Then: 

 

 

 

 Because for triangular matrices (with     being invertible), 
the determinant is the product of diagonal elements 

  

Determinant 
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Determinant: Properties  
§  Row operations (    still a          square matrix) 

§  If    results from    by interchanging two rows, 
then 

§  If    results from    by multiplying one row with a number   , 
then 

§  If    results from    by adding a multiple of one row to another 
row, then 

§  Transpose: 

§  Multiplication: 

§  Does not apply to addition! 
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Determinant: Applications 
§  Compute Eigenvalues 

 Solve the characteristic polynomial 
 
§  Area and Volume:  

(    is i-th row) 
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§  A matrix     is orthogonal iff its column (row) 
vectors represent an orthonormal basis 

§  As linear transformation, it is norm preserving, 
and acts as an isometry in Euclidean space 
(rotation, reflection) 

§  Some properties: 
§  The transpose is the inverse 
§  Determinant has unity norm (± 1) 

Orthogonal matrix 
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§  Important in robotics 

§  2D Rotations 

§  3D Rotations along the main axes 

§  IMPORTANT: Rotations are not commutative 

  
 
 
  
 

Rotational matrix 
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Matrices as Affine Transformations 
§  A general and easy way to describe a 3D 

transformation is via matrices. 
 

 
 

§  Homogeneous behavior in 2D and 3D 
§  Takes naturally into account the non-

commutativity of the transformations 

Rotation Matrix 

Translation Vector 
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Combining Transformations 
§  A simple interpretation: chaining of transformations 

(represented as homogeneous matrices) 
§  Matrix A represents the pose of a robot in the space 
§  Matrix B represents the position of a sensor on the robot 
§  The sensor perceives an object at a given location p, in its own 

frame [the sensor has no clue on where it is in the world] 
§  Where is the object in the global frame? 

p
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Combining Transformations 
§  A simple interpretation: chaining of transformations 

(represented as homogeneous matrices) 
§  Matrix A represents the pose of a robot in the space 
§  Matrix B represents the position of a sensor on the robot 
§  The sensor perceives an object at a given location p, in its own 

frame [the sensor has no clue on where it is in the world] 
§  Where is the object in the global frame? 

B
Bp gives me the pose of 
the object wrt the robot 

ABp gives me the pose of 
the object wrt the world 

A
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§  A matrix     is symmetric if            , e.g. 

§  A matrix     is anti-symmetric if             , e.g. 

§  Every symmetric matrix: 
§  can be diagonalizable                  , where     is a diagonal 

matrix of eigenvalues and     is an orthogonal matrix whose 
columns are the eigenvectors of  

§  define a quadratic form 

Symmetric matrix 

b l a
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§  The analogous of positive number 

§  Definition 
§    

§  Examples 

§    

§    

Positive definite matrix 
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§  Properties 
§  Invertible, with positive definite inverse 
§  All eigenvalues > 0 
§  Trace is > 0 
§  For any p.d.    ,             are positive definite 
§  Cholesky decomposition 

Positive definite matrix 
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Jacobian Matrix 
§  It’s a non-square matrix           in general 
§  Suppose you have a vector-valued function 

 
 
 

§  Let the gradient operator be the vector of 
(first-order) partial derivatives 

§  Then, the Jacobian matrix is defined as 
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§  It’s the orientation of the tangent plane to the vector-
valued function at a given point 

  

§  Generalizes the gradient of a scalar valued function  

§  Heavily used for first-order error propagation 

§   See later in the course 

Jacobian Matrix 
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Quadratic Forms 
§  Many important functions can be locally 

approximated with a quadratic form. 
 
 

§  Often one is interested in finding the 
minimum (or maximum) of a quadratic 
form. 
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Quadratic Forms 
§  How can we use the matrix properties to 

quickly compute a solution to this 
minimization problem? 
 

§  At the minimum we have  
§  By using the definition of matrix product we 

can compute f’ 
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Quadratic Forms 
§  The minimum of               is where 

its derivative is set to 0 

§  Thus we can solve the system 
 

 
§  If the matrix is symmetric, the system 

becomes  


