
Albert-Ludwigs-Universität Freiburg Institut für Informatik
Lecture: Introduction to Mobile Robotics
Summer term 2011 Prof. Dr. Wolfram Burgard

PD Dr. Cyrill Stachniss
Juniorprof. Dr. Maren Bennewitz

Juniorprof. Dr. Kai Arras

Sheet 8
Topic: Extended Kalman Filter

Submission deadline: July 5, 2011
Submit to: mobilerobotics@informatik.uni-freiburg.de

General Notice

In this exercise, you will implement an extended Kalman filter (EKF) similar to
the previous exercise sheet. The framework for the implementation can be obtained
from the website of the course. The tarball contains the following folders:

data This folder contains files representing the world definition and sensor readings
used by the filter.

octave This folder contains the EKF framework with stubs for you to complete.

plots The framework uses this folder to store images generated by the visualization.

samples Sample implementations of the sensor and motion model are provided in
this folder.

To run the EKF, change into the directory octave and launch the Octave program.
Inside Octave, type extended kalman filter to start the EKF. Running the EKF
may take some time. While the EKF is running, plots visualizing the state of the
filter are generated and stored in the plots directory.

Note: You first have to complete all the stubs in order to get the filter working
correctly.

We use the librobotics library for some of the visualization. All functions defined in
the library are available in the framework.

Some implementation tips:

• Turn off the visualization to speed up the computation by commenting out
the line plot state(... in the file extended kalman filter.m.

• While debugging run the filter only for a few steps by replacing the for-loop in
extended kalman filter.m by something along the lines of for t = 1:50.

1

http://srl.informatik.uni-freiburg.de/downloads

• The command repmat allows you to replicate a given matrix in many different
ways and is magnitudes faster than using for-loops.

• When converting implementations containing for-loops into a vectorized form
it often helps to draw the dimensions of the data involved on a sheet of paper.

• Many of the functions in Octave can handle matrices and compute values along
the rows or columns of a matrix. Some useful functions that support this are
sum, sqrt, and many others.

Exercise 1: Theoretical Considerations

The EKF is an implementation of the Bayes Filter.

(a) The Bayes filter processes three probability density functions, i. e.,
p(xt | ut, xt−1), p(zt | xt), and bel(xt). State the normal distributions of
the EKF which correspond to these probabilities.

(b) Explain in a few sentences all of the components of the EKF, i. e., µt, Σt, g,
Gt, h, Ht, Qt, Rt, Kt and why they are needed.

Exercise 2: EKF Prediction Step

We assume a differential drive robot operating on a 2-dimensional plane, i.e., its
state is defined by 〈x, y, θ〉. Its motion model is defined on slide 10 (Odometry
Model) in the chapter Probabilistic Motion Models of the lecture slides.

(a) Derive the Jacobian matrix Gt of the noise-free motion function g. Keep in
mind that you implemented a similar function for exercise sheet 4. Do not use
Octave.

(b) Implement the prediction step of the EKF in the file prediction step.m using
your Jacobian Gt. For the noise in the motion model assume

Qt =

 0.2 0 0
0 0.2 0
0 0 0.02

 .

(c) Compare how this choice of Qt models motion noise to the way in which the
motion model from the particle filter (exercise sheet 6) models it. Bonus
question: How could one change Qt such that it models the motion noise in
the same way as the motion model in sheet 6?

2

Exercise 3: EKF Correction Step

(a) Derive the Jacobian matrix Ht of the noise-free measurement function h of a
range-only sensor. Do not use Octave.

(b) Implement the correction step of the EKF in the file correction step.m using
your Jacobian Ht. For the noise in the sensor model assume that Rt is the
diagonal square matrix

Rt =


0.5 0 0 . . .
0 0.5 0 . . .
0 0 0.5 . . .
...

...
...

. . .

 ∈ Rsize(zt)×size(zt).

After having successfully implemented the prediction step and the correction step,
you can generate an animation from the saved images using ffmpeg or mencoder.
With ffmpeg you can use the following command to generate the animation from
inside the plots folder:

ffmpeg -r 10 -b 500000 -i kf_%03d.png ekf.mp4

3

