Contents

Foundations of Artificial Intelligence
 11. Predicate Logic
 Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller
Albert-Ludwigs-Universität Freiburg
July 15, 2011

Motivation

We can already do a lot with propositional logic. It is, however, annoying that there is no structure in the atomic propositions.
Example:
"All blocks are red"
"There is a block A"
It should follow that " A is red"
But propositional logic cannot handle this.
Idea: We introduce individual variables, predicates, functions,
\rightarrow First-Order Predicate Logic (PL1)MotivationSyntax and SemanticsNormal FormsReduction to Propositional Logic: Herbrand ExpansionResolution \& UnificationClosing Remarks

The Alphabet of First-Order Predicate Logic

Symbols:

- Operators: $\neg, \vee, \wedge, \forall, \exists,=$
- Variables: $x, x_{1}, x_{2}, \ldots, x^{\prime}, x^{\prime \prime}, \ldots, y, \ldots, z, \ldots$
- Brackets: (), [], \{\}
- Function symbols (e.g., weight () , color ()$)$
- Predicate symbols (e.g., block(), red ())
- Predicate and function symbols have an arity (number of arguments). 0 -ary predicate: propositional logic atoms 0 -ary function: constant
- We suppose a countable set of predicates and functions of any arity.
- " $=$ " is usually not considered a predicate, but a logical symbol

The Grammar of First-Order Predicate Logic (1)

Terms (represent objects):

1. Every variable is a term.
2. If $t_{1}, t_{2}, \ldots, t_{n}$ are terms and f is an n-ary function, then

$$
f\left(t_{1}, t_{2}, \ldots, t_{n}\right)
$$

is also a term.
Terms without variables: ground terms.
Atomic Formulae (represent statements about objects)

1. If $t_{1}, t_{2}, \ldots, t_{n}$ are terms and P is an n-ary predicate, then $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is an atomic formula.
2. If t_{1} and t_{2} are terms, then $t_{1}=t_{2}$ is an atomic formula. Atomic formulae without variables: ground atoms.

Alternative Notation

Here	Elsewhere		
$\neg \varphi$	$\sim \varphi$	$\bar{\varphi}$	
$\varphi \wedge \psi$	$\varphi \& \psi$	$\varphi \bullet \psi$	φ, ψ
$\varphi \vee \psi$	$\varphi \mid \psi$	$\varphi ; \psi$	$\varphi+\psi$
$\varphi \Rightarrow \psi$	$\varphi \rightarrow \psi$	$\varphi \supset \psi$	
$\varphi \Leftrightarrow \psi$	$\varphi \leftrightarrow \psi$	$\varphi \equiv \psi$	
$\forall x \varphi$	$(\forall x) \varphi \wedge x \varphi$		
$\exists x \varphi$	$(\exists x) \varphi \vee x \varphi$		

Meaning of PL1-Formulae

Formulae:

1. Every atomic formula is a formula.
2. If φ and ψ are formulae and x is a variable, then

$$
\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Rightarrow \psi, \varphi \Leftrightarrow \psi, \exists x \varphi \text { and } \forall x \varphi
$$

are also formulae.
\forall, \exists are as strongly binding as \neg.
Propositional logic is part of the PL1 language:

1. Atomic formulae: only 0 -ary predicates
2. Neither variables nor quantifiers.

Our example: $\forall x[\operatorname{Block}(x) \Rightarrow \operatorname{Red}(x)]$, $\operatorname{Block}(a)$
For all objects x : If x is a block, then x is red and a is a block.
Generally:

- Terms are interpreted as objects.
- Universally-quantified variables denote all objects in the universe.
- Existentially-quantified variables represent one of the objects in the universe (made true by the quantified expression).
- Predicates represent subsets of the universe.

Similar to propositional logic, we define interpretations, satisfiability, models, validity, ...

Semantics of PL1-Logic

Example (1)

Interpretation: $I=\left\langle D, \bullet^{I}\right\rangle$ where D is an arbitrary, non-empty set and \bullet^{I} is a function that

- maps n-ary function symbols to functions over D :

$$
f^{I} \in\left[D^{n} \mapsto D\right]
$$

- maps individual constants to elements of D :

$$
a^{I} \in D
$$

- maps n-ary predicate symbols to relations over D :

$$
P^{I} \subseteq D^{n}
$$

Interpretation of ground terms:

$$
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{I}=f^{I}\left(t_{1}^{I}, \ldots, t_{n}^{I}\right)
$$

Satisfaction of ground atoms $P\left(t_{1}, \ldots, t_{n}\right)$:

$$
I \models P\left(t_{1}, \ldots, t_{n}\right) \text { iff }\left\langle t_{1}^{I}, \ldots, t_{n}^{I}\right\rangle \in P^{I}
$$

Example (2)

$$
\begin{aligned}
& D=\{1,2,3, \ldots\} \\
& 1^{I}=1 \\
& 2^{I}=2 \\
& \cdots \\
& \text { Even }^{I}=\{2,4,6, \ldots\} \\
& \text { succ }^{I}=\{(1 \mapsto 2),(2 \mapsto 3), \ldots\} \\
& I \models \operatorname{Even}(2) \\
& I \not \models \operatorname{Even}(\operatorname{succ}(2))
\end{aligned}
$$

$$
\begin{aligned}
D & =\left\{d_{1}, \ldots, d_{n} \mid n>1\right\} \\
a^{I} & =d_{1} \\
b^{I} & =d_{2} \\
c^{I} & =\ldots \\
\text { Block }^{I} & =\left\{d_{1}\right\} \\
\operatorname{Red}^{I} & =D \\
I & \models \operatorname{Red}(b) \\
I & \not \models \operatorname{Block}(b)
\end{aligned}
$$

Semantics of PL1: Variable Assignment

Set of all variables V. Function $\alpha: V \mapsto D$
Notation: $\alpha[x / d]$ is the same as α apart from point x.
For $x: \alpha[x / d](x)=d$.
Interpretation of terms under I, α :

$$
\begin{aligned}
x^{I, \alpha} & =\alpha(x) \\
a^{I, \alpha} & =a^{I} \\
\left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{I, \alpha} & =f^{I}\left(t_{1}^{I, \alpha}, \ldots, t_{n}^{I, \alpha}\right)
\end{aligned}
$$

Satisfaction of atomic formulae:

$$
I, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) \text { iff }\left\langle t_{1}^{I, \alpha}, \ldots, t_{n}^{I, \alpha}\right\rangle \in P^{I}
$$

Example

Semantics of PL1: Satisfiability

$$
\begin{aligned}
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\} \\
I, \alpha & \models \operatorname{Red}(x) \\
I, \alpha\left[y / d_{1}\right] & \models \operatorname{Block}(y)
\end{aligned}
$$

A formula φ is satisfied by an interpretation I and a variable assignment α, i.e., $I, \alpha=\varphi$:

$$
\begin{aligned}
& I, \alpha \models \top \\
& I, \alpha \not \models \perp \\
& I, \alpha \models \neg \varphi \text { iff } I, \alpha \not \models \varphi
\end{aligned}
$$

and all other propositional rules as well as

$$
\begin{array}{lll}
I, \alpha \models P\left(t_{1}, \ldots, t_{n}\right) & \text { iff } & \left\langle t_{1}^{I, \alpha}, \ldots, t_{n}^{I, \alpha}\right\rangle \in P^{I, \alpha} \\
I, \alpha \models \forall x \varphi & \text { iff } & \text { for all } d \in D, I, \alpha[x / d] \models \varphi \\
I, \alpha \models \exists x \varphi & \text { iff } & \text { there exists a } d \in D \text { with } I, \alpha[x / d] \models \varphi
\end{array}
$$

Example

$$
\begin{aligned}
T & =\{\operatorname{Block}(a), \operatorname{Block}(b), \forall x(\operatorname{Block}(x) \Rightarrow \operatorname{Red}(x))\} \\
D & =\left\{d_{1}, \ldots, d_{n} \mid n>1\right\} \\
a^{I} & =d_{1} \\
b^{I} & =d_{2} \\
\text { Block }^{I} & =\left\{d_{1}\right\} \\
\operatorname{Red}^{I} & =D \\
\alpha & =\left\{\left(x \mapsto d_{1}\right),\left(y \mapsto d_{2}\right)\right\}
\end{aligned}
$$

Questions:

1. $I, \alpha \models \operatorname{Block}(b) \vee \neg \operatorname{Block}(b)$?
2. $I, \alpha \models \operatorname{Block}(x) \Rightarrow(\operatorname{Block}(x) \vee \neg \operatorname{Block}(y))$?
3. $I, \alpha \models \operatorname{Block}(a) \wedge \operatorname{Block}(b)$?
4. $I, \alpha \models \forall x(\operatorname{Block}(x) \Rightarrow \operatorname{Red}(x))$?
5. $I, \alpha \models$ 丁?

Free and Bound Variables

$$
\forall x[R(\boxed{y}, \boxed{z}) \wedge \exists y\{\neg P(y, x) \vee R(y, z)\}]
$$

The boxed appearances of y and z are free. All other appearances of x, y, z are bound.
Formulae with no free variables are called closed formulae or sentences.
We form theories from closed formulae.
Note: With closed formulae, the concepts logical equivalence, satisfiability, and implication, etc. are not dependent on the variable assignment α (i.e., we can always ignore all variable assignments).

With closed formulae, α can be left out on the left side of the model relationship symbol:

$$
I \models \varphi
$$

Terminology

Prenex Normal Form

An interpretation I is called a model of φ under α if

$$
I, \alpha \models \varphi
$$

A PL1 formula φ can, as in propositional logic, be satisfiable, unsatisfiable, falsifiable, or valid.

Analogously, two formulae are logically equivalent $(\varphi \equiv \psi)$ if for all I, α :

$$
I, \alpha \models \varphi \text { iff } I, \alpha \models \psi
$$

Note: $P(x) \not \equiv P(y)$!
Logical Implication is also analogous to propositional logic.
Question: How can we define derivation?

Equivalences for the Production of Prenex Normal Form

$$
\begin{aligned}
(\forall x \varphi) \wedge \psi & \equiv \forall x(\varphi \wedge \psi) \text { if } x \text { not free in } \psi \\
(\forall x \varphi) \vee \psi & \equiv \forall x(\varphi \vee \psi) \text { if } x \text { not free in } \psi \\
(\exists x \varphi) \wedge \psi & \equiv \exists x(\varphi \wedge \psi) \text { if } x \text { not free in } \psi \\
(\exists x \varphi) \vee \psi & \equiv \exists x(\varphi \vee \psi) \text { if } x \text { not free in } \psi \\
\forall x \varphi \wedge \forall x \psi & \equiv \forall x(\varphi \wedge \psi) \\
\exists x \varphi \vee \exists x \psi & \equiv \exists x(\varphi \vee \psi) \\
\neg \forall x \varphi & \equiv \exists x \neg \varphi \\
\neg \exists x \varphi & \equiv \forall x \neg \varphi
\end{aligned}
$$

... and propositional logic equivalents

Production of Prenex Normal Form

Because of the quantifiers, we cannot produce the CNF form of a formula directly.

First step: Produce the prenex normal form

$$
\text { quantifier prefix }+ \text { (quantifier-free) matrix }
$$

Eliminate \Rightarrow and \Leftrightarrow
2. Move \neg inwards
3. Move quantifiers outwards

Example:

$$
\begin{aligned}
& \neg \forall x[(\forall x P(x)) \Rightarrow Q(x)] \\
\rightarrow & \neg \forall x[\neg(\forall x P(x)) \vee Q(x)] \\
\rightarrow & \exists x[(\forall x P(x)) \wedge \neg Q(x)]
\end{aligned}
$$

And now?

Renaming of Variables

Derivation in PL1

$\varphi\left[\frac{x}{t}\right]$ is obtained from φ by replacing all free appearances of x in φ by t
Lemma: Let y be a variable that does not appear in φ. Then it holds that

$$
\forall x \varphi \equiv \forall y \varphi\left[\frac{x}{y}\right] \text { and } \exists x \varphi \equiv \exists y \varphi\left[\frac{x}{y}\right]
$$

Theorem: There exists an algorithm that calculates the prenex normal form of any formula.

Skolemization

Idea: Elimination of existential quantifiers by applying a function that produces the "right" element.
Theorem (Skolem Normal Form): Let φ be a closed formula in prenex normal form such that all quantified variables are pair-wise distinct and the function symbols g_{1}, g_{2}, \ldots do not appear in φ. Let

$$
\varphi=\forall x_{1} \cdots \forall x_{i} \exists y \psi,
$$

then φ is satisfiable iff

$$
\varphi^{\prime}=\forall x_{1} \cdots \forall x_{i} \psi\left[\frac{y}{g_{i}\left(x_{1}, \ldots, x_{i}\right)}\right]
$$

is satisfiable.
Example: $\forall x \exists y[P(x) \Rightarrow Q(y)] \rightarrow \forall x[P(x) \Rightarrow Q(g(x))]$

Why is prenex normal form useful?

Unfortunately, there is no simple law as in propositional logic that allows us to determine satisfiability or general validity (by transformation into DNF or CNF).
But: we can reduce the satisfiability problem in predicate logic to the satisfiability problem in propositional logic. In general, however, this produces a very large number of propositional formulae (perhaps infinitely many)
Then: apply resolution.

Skolem Normal Form

Skolem Normal Form: Prenex normal form without existential quantifiers. Notation: φ^{*} is the SNF of φ.

Theorem: It is possible to calculate the Skolem normal form of every closed formula φ.
Example: $\exists x((\forall x P(x)) \wedge \neg Q(x))$ develops as follows:

$$
\begin{aligned}
& \exists y((\forall x P(x)) \wedge \neg Q(y)) \\
& \exists y(\forall x(P(x) \wedge \neg Q(x))) \\
& \forall x\left(P(x) \wedge \neg Q\left(g_{0}\right)\right)
\end{aligned}
$$

Note: This transformation is not an equivalence transformation; it only preserves satisfiability!
Note: . . . and is not unique.

Ground Terms \& Herbrand Expansion

Infinite Propositional Logic Theories

The set of ground terms (or Herbrand Universe) over a set of SNF formulae θ^{*} is the (infinite) set of all ground terms formed from the symbols of θ^{*} (in case there is no constant symbol, one is added). This set is denoted by $D\left(\theta^{*}\right)$.
The Herbrand expansion $E\left(\theta^{*}\right)$ is the instantiation of the Matrix ψ_{i} of all formulae in θ^{*} through all terms $t \in D\left(\theta^{*}\right)$:

$$
E\left(\theta^{*}\right)=\left\{\left.\psi_{i}\left[\frac{x_{1}}{t_{1}}, \ldots, \frac{x_{n}}{t_{n}}\right] \right\rvert\,\left(\forall x_{1}, \ldots, x_{n} \psi_{i}\right) \in \theta^{*}, t_{j} \in D\left(\theta^{*}\right)\right\}
$$

Theorem (Herbrand): Let θ^{*} be a set of formulae in SNF. Then θ^{*} is satisfiable iff $E\left(\theta^{*}\right)$ is satisfiable.
Note: If $D\left(\theta^{*}\right)$ and θ^{*} are finite, then the Herbrand expansion is finite \rightarrow finite propositional logic theory.
Note: This is used heavily in Al and works well most of the time!

Recursive Enumeration and Decidability

We can construct a semi-decision procedure for validity, i.e., we can give a (rather inefficient) algorithm that enumerates all valid formulae step by step.
Theorem: The set of valid (and unsatisfiable) formulae in PL1 is recursively enumerable.

What about satisfiable formulae?
Theorem (undecidability of PL1): It is undecidable, whether a formula of PL1 is valid.
(Proof by reduction from PCP)
Corollary: The set of satisfiable formulae in PL1 is not recursively enumerable.
In other words: If a formula is valid, we can effectively confirm this fact. Otherwise, we can end up in an infinite loop.

Can a finite proof exist when the set is infinite?
Theorem (compactness of propositional logic): A (countable) set of formulae of propositional logic is satisfiable if and only if every finite subset is satisfiable.

Corollary: A (countable) set of formulae in propositional logic is unsatisfiable if and only if a finite subset is unsatisfiable.
Corollary: (compactness of PL1): A (countable) set of formulae in predicate logic is satisfiable if and only if every finite subset is satisfiable.

Derivation in PL1

Clausal Form instead of Herbrand Expansion.
Clauses are universally quantified disjunctions of literals; all variables are universally quantified
$\left(\forall x_{1}, \ldots, x_{n}\right)\left(l_{1} \vee \ldots \vee l_{n}\right) \quad$ written as
$l_{1} \vee \ldots \vee l_{n}$
or
$\left\{l_{1}, \ldots, l_{n}\right\}$

Production of Clausal Form from SNF

Skolem Normal Form
quantifier prefix + (quantifier-free) matrix
$\forall x_{1} \forall x_{2} \forall x_{3} \cdots \forall x_{n} \varphi$

1. Put Matrix into CNF using distribution rule
2. Eliminate universal quantifiers
3. Eliminate conjunction symbol
4. Rename variables so that no variable appears in more than one clause.

Theorem: It is possible to calculate the clausal form of every closed formula φ.

Note: Same remarks as for SNF

Conversion to CNF (2)

3. Standardize variables: each quantifier should use a different one $\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall x[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
5. Drop universal quantifiers:
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
6. Distribute \wedge over \vee :
$[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Everyone who loves all animals is loved by someone:

$$
\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]
$$

1. Eliminate biconditionals and implications
$\forall x \neg[\forall y \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
2. Move \neg inwards: $\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p$
$\forall x[\exists y \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)]$
$\forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$

Clauses and Resolution

Assumption: All formulae in the KB are clauses.
Equivalently, we can assume that the KB is a set of clauses.
Due to commutativity, associativity, and idempotence of \vee, clauses can also be understood as sets of literals. The empty set of literals is denoted by \square.
Set of clauses: Δ
Set of literals: C, D
Literal: l
Negation of a literal: \bar{l}

Propositional Resolution

What Changes?

$$
\frac{C_{1} \dot{\cup}\{l\}, C_{2} \dot{\cup}\{\bar{q}\}}{C_{1} \cup C_{2}}
$$

$C_{1} \cup C_{2}$ are called resolvents of the parent clauses $C_{1} \dot{\cup}\{l\}$ and $C_{2} \dot{\cup}\{\bar{l}\} . l$ and \bar{l} are the resolution literals.
Example: $\{a, b, \neg c\}$ resolves with $\{a, d, c\}$ to $\{a, b, d\}$.
Note: The resolvent is not equivalent to the parent clauses, but it follows from them!

Notation: $R(\Delta)=\Delta \cup\{C \mid C$ is a resolvent of two clauses from $\Delta\}$

Substitutions

Substitution Examples

A substitution $s=\left\{\frac{v_{1}}{t_{1}}, \ldots, \frac{v_{n}}{t_{n}}\right\}$ substitutes variables v_{i} for terms $t_{i}\left(t_{i}\right.$ does NOT contain v_{i}).

Applying a substitution s to an expression φ yields the expression φs which is φ with all occurrences of v_{i} replaced by t_{i} for all i.

Examples

Based on the notion of substitution, e.g., $\left\{\frac{x}{0}\right\}$.
$\{\{\operatorname{Nat}(s(0)), \neg \operatorname{Nat}(0)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$
$\{\{\operatorname{Nat}(s(0)), \neg \operatorname{Nat}(x)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$
$\{\{\operatorname{Nat}(s(x)), \neg \operatorname{Nat}(x)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$

We need unification, a way to make literals identical.

$$
\begin{aligned}
P(x, f(y), B) & \\
P(z, f(w), B) & s=\left\{\frac{x}{z}, \frac{y}{w}\right\} \\
P(x, f(A), B) & s=\left\{\frac{y}{A}\right\} \\
P(g(z), f(A), B) & s=\left\{\frac{x}{g(z)}, \frac{y}{A}\right\} \\
P(C, f(A), A) &
\end{aligned}
$$

Composing Substitutions

Properties of substitutions

Composing substitutions s_{1} and s_{2} gives $s_{1} s_{2}$ which is that substitution obtained by first applying s_{2} to the terms in s_{1} and adding remaining term/variable pairs (not occurring in s_{1}) to s_{1}.
Example: $\left\{\frac{z}{g(x, y)}\right\}\left\{\frac{x}{A}, \frac{y}{B}, \frac{w}{C}, \frac{z}{D}\right\}=\left\{\frac{z}{g(A, B)}, \frac{x}{A}, \frac{y}{B}, \frac{w}{C}\right\}$
Application example: $P(x, y, z) \rightarrow P(A, B, g(A, B))$

For a formula φ and substitutions s_{1}, s_{2}

$$
\begin{array}{lr}
\left(\varphi s_{1}\right) s_{2}=\varphi\left(s_{1} s_{2}\right) & \\
\left(s_{1} s_{2}\right) s_{3}=s_{1}\left(s_{2} s_{3}\right) & \text { associativity } \\
s_{1} s_{2} \neq s_{2} s_{1} & \text { no commutativity! }
\end{array}
$$

Unification

Unifying a set of expressions $\left\{w_{i}\right\}$
Find substitution s such that $w_{i} s=w_{j} s$ for all i, j
Example
$\{P(x, f(y), B), P(x, f(B), B)\}$
$s=\left\{\frac{y}{B}, \frac{z}{A}\right\} \quad$ not the simplest unifier
$s=\left\{\frac{y}{B}\right\} \quad$ most general unifier (mgu)
The most general unifier, the mgu, g of $\left\{w_{i}\right\}$ has the property that if s is any unifier of $\left\{w_{i}\right\}$ then there exists a substitution s^{\prime} such that $\left\{w_{i}\right\} s=\left\{w_{i}\right\} g s^{\prime}$

Property: The common instance produced is unique up to alphabetic variants (variable renaming)

Subsumption Lattice

a)

b)

Disagreement Set

The disagreement set of a set of expressions $\left\{w_{i}\right\}$ is the set of sub-terms $\left\{t_{i}\right\}$ of $\left\{w_{i}\right\}$ at the first position in $\left\{w_{i}\right\}$ for which the $\left\{w_{i}\right\}$ disagree

Examples

$$
\begin{array}{lll}
\{P(x, A, f(y)), P(v, B, z)\} & \text { gives } & \{x, v\} \\
\{P(x, A, f(y)), P(x, B, z)\} & \text { gives } & \{A, B\} \\
\{P(x, y, f(y)), P(x, B, z)\} & \text { gives } & \{y, B\}
\end{array}
$$

Unification Algorithm

Unify(Terms):

Initialize $k \leftarrow 0$;
Initialize $T_{k}=$ Terms;
Initialize $s_{k}=\{ \}$;
*If T_{k} is a singleton, then output s_{k}. Otherwise continue.
Let D_{k} be the disagreement set of T_{k}.
If there exists a var v_{k} and a term t_{k} in D_{k} such that v_{k} does not occur in t_{k}, continue. Otherwise, exit with failure.

$$
\begin{aligned}
& s_{k+1} \leftarrow s_{k}\left\{\frac{v_{k}}{t_{k}}\right\} \\
& T_{k+1} \leftarrow T_{k}\left\{\frac{v_{k}}{t_{k}}\right\} \\
& k \leftarrow k+1
\end{aligned}
$$

Goto *.

Example

Binary Resolution

$\{P(x, f(y), y), P(z, f(B), B)\}$

$$
\frac{C_{1} \dot{\cup}\left\{l_{1}\right\}, C_{2} \dot{\cup}\left\{\overline{\bar{L}_{2}}\right\}}{\left[C_{1} \cup C_{2}\right] s}
$$

where $s=m g u\left(l_{1}, l_{2}\right)$, the most general unifier $\left[C_{1} \cup C_{2}\right] s$ is the resolvent of the parent clauses $C_{1} \dot{\cup}\left\{l_{1}\right\}$ and $C_{2} \dot{\cup}\left\{\overline{l_{2}}\right\}$.
$C_{1} \dot{\cup}\left\{l_{1}\right\}$ and $C_{2} \dot{\cup}\left\{\overline{l_{2}}\right\}$ do not share variables l_{1} and l_{2} are the resolution literals.

Examples: $\{\{\operatorname{Nat}(s(0)), \neg \operatorname{Nat}(0)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$
$\{\{\operatorname{Nat}(s(0)), \neg \operatorname{Nat}(x)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$
$\{\{\operatorname{Nat}(s(x)), \neg \operatorname{Nat}(x)\},\{\operatorname{Nat}(0)\}\} \vdash\{\operatorname{Nat}(s(0))\}$

Resolve $P(x) \vee Q(f(x))$ and $R(g(x)) \vee \neg Q(f(A))$
Standardizing the variables apart gives $P(x) \vee Q(f(x))$ and $R(g(y)) \vee \neg Q(f(A))$
Substitution $s=\left\{\frac{x}{A}\right\} \quad$ Resolvent $P(A) \vee R(g(y))$

Resolve $P(x) \vee Q(x, y)$ and $\neg P(A) \vee \neg R(B, z)$
Standardizing the variables apart
Substitution $s=\left\{\frac{x}{A}\right\}$ and Resolvent $Q(A, y) \vee \neg R(B, z)$

Derivations

Notation: $R(\Delta)=\Delta \cup\{C \mid C$ is a resolvent or a factor of two clauses
from Δ \}
We say D can be derived from Δ, i.e.,

$$
\Delta \vdash D,
$$

if there exist $C_{1}, C_{2}, C_{3}, \ldots, C_{n}=D$ such that
$C_{i} \in R\left(\Delta \cup\left\{C_{1}, \ldots, C_{i-1}\right\}\right)$ for $1 \leq i \leq n$.

$$
\frac{C_{1} \dot{\cup}\left\{l_{1}\right\} \dot{\cup}\left\{l_{2}\right\}}{\left[C_{1} \cup\left\{l_{1}\right\}\right] s}
$$

where $s=\operatorname{mgu}\left(l_{1}, l_{2}\right)$ is the most general unifier.
Needed because:

$$
\{\{P(u), P(v)\},\{\neg P(x), \neg P(y)\}\} \models \square
$$

but \square cannot be derived by binary resolution
Factoring yields:
$\{P(u)\}$ and $\{\neg P(x)\}$ whose resolvent is \square.

Example

From Russell and Norvig:
The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal.

Example

An Example
... it is a crime for an American to sell weapons to hostile nations $\operatorname{American}(x) \wedge$ weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono . . . has some missiles, i.e., $\exists x \operatorname{Owns}(\operatorname{Nono}, x) \wedge \operatorname{Missile}(x)$:
Owns (Nono, M_{1}) and Missile (M_{1})
. all of its missiles were sold to it by Colonel West.
$\forall x \operatorname{Missiles}(x) \wedge$ Owns $($ Nono,$x) \Rightarrow \operatorname{Sells}($ West, x, Nono)
Missiles are weapons
Missile (x) \Rightarrow Weapon (x)
An enemy of America counts as "hostile":
Enemy $(x$, America $) \Rightarrow$ Hostile (x)
West, who is American ...
American(West)
The country Nono, an enemy of America
Enemy(Nono, America)

Another Example


```
Properties of Resolution
```

Lemma: (soundness) If $\Delta \vdash D$, then $\Delta \models D$.
Lemma: resolution is refutation-complete:
Δ is unsatisfiable implies $\Delta \vdash \square$.
Theorem: Δ is unsatisfiable iff $\Delta \vdash \square$.
Technique: to prove that $\Delta \models C$
negate C and prove that $\Delta \cup\{\neg C\} \vdash \square$.

The Lifting Lemma

Lemma: Let C_{1} and C_{2} be two clauses with no shared variables, and let C_{1}^{\prime} and C_{2}^{\prime} be ground instances of C_{1} and C_{2}. If C^{\prime} is a resolvent of C_{1}^{\prime} and C_{2}^{\prime}, then there exists a clause such that
(1) C is a resolvent of C_{1} and C_{2}
(2) C^{\prime} is a ground instance of C

Can be easily generalized to derivations

Closing Remarks: Processing

- PL1-Resolution: forms the basis of
- most state of the art theorem provers for PL1
- the programming language Prolog
- only Horn clauses
- considerably more efficient methods.
- not dealt with : search/resolution strategies
- Finite theories: In applications, we often have to deal with a fixed set of objects. Domain closure axiom:

$$
\forall x\left[x=c_{1} \vee x=c_{2} \vee \ldots \vee x=c_{n}\right]
$$

- Translation into finite propositional theory is possible.

Any set of sentences S is representable in clausal form \downarrow
Assume S is unsatisfiable, and in clausal form
$\downarrow \longleftarrow$ Herbrand's theorem
Some set S^{\prime} of ground instances is unsatisfiable
\qquad Ground resolution theorem
Resolution can find a contradiction in S^{\prime}
$\downarrow \longleftarrow$ Lifting lemma
There is a resolution proof for the contradiction in S

Closing Remarks: Possible Extensions

- PL1 is definitely very expressive, but in some circumstances we would like more...
- Second-Order Logic: Also over predicate quantifiers

$$
\forall x, y[(x=y) \Leftrightarrow\{\forall p[p(x) \Leftrightarrow p(y)]\}]
$$

- Validity is no longer semi-decidable (we have lost compactness)
- Lambda Calculus: Definition of predicates, e.g., $\lambda x, y[\exists z P(x, z) \wedge Q(z, y)]$ defines a new predicate of arity 2
- Reducible to PL1 through Lambda-Reduction
- Uniqueness quantifier: $\exists!x \varphi(x)$ - there is exactly one $x \ldots$
- Reduction to PL1:

$$
\exists x[\varphi(x) \wedge \forall y\{\varphi(y) \Rightarrow x=y\}]
$$

- PL1 makes it possible to structure statements, thereby giving us considerably more expressive power than propositional logic.
- Formulae consist of terms and atomic formulae, which, together with connectors and quantifiers, can be put together to produce formulae.
- Interpretations in PL1 consist of a universe and an interpretation function.
- The Herbrand Theory shows that satisfiability in PL1 can be reduced to satisfiability in propositional logic (although infinite sets of formulae can arise under certain circumstances)
- Resolution is refutation complete
- Validity in PL1 is not decidable (it is only semi-decidable)

