Foundations of Artificial Intelligence 4. Informed Search Methods Heuristics, Local Search Methods, Genetic Algorithms

Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller

Albert-Ludwigs-Universität Freiburg Mai 17. 2011

Best-First Search

Search procedures differ in the way they determine the next node to expand.

- Uninformed Search: Rigid procedure with no knowledge of the cost of a given node to the goal.
 - **Informed Search:** Knowledge of the worth of expanding a node n is given in the form of an *evaluation function* f(n), which assigns a real number to each node. Mostly, f(n) includes as a component a *heuristic function* h(n), which estimates the costs of the cheapest path from n to the goal.

Best-First Search: Informed search procedure that expands the node with the "best" *f*-value first.

Contents

General Algorithm

function TREE-SEARCH(problem) returns a solution, or failure initialize the frontier using the initial state of *problem* loop do if the frontier is empty then return failure choose a leaf node and remove it from the frontier if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

Best-first search is an instance of the general TREE-SEARCH algorithm in which frontier is a priority queue ordered by an evaluation function f.

When f is always correct, we do not need to search!

Greedy Search

A possible way to judge the "worth" of a node is to estimate its path-costs to the goal.

h(n) = estimated path-costs from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e. f(n) = g(n)is called a greedy search.

Example: Route-finding problem:

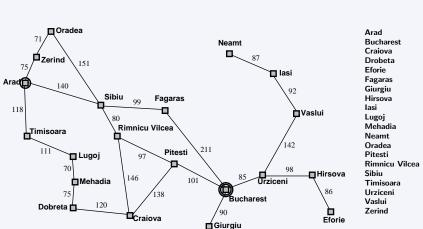
h(n) =straight-line distance from n to the goal

(University of Freiburg)

Greedy Search Example

Foundations of AI

Mai 17, 2011 5 / 32



rad	366
ucharest	0
raiova	160
robeta	242
forie	161
agaras	176
iurgiu	77
irsova	151
si	226
ugoj	244
lehadia	241
eamt	234
radea	380
itesti	100
imnicu Vilcea	193
ibiu	253
imisoara	329
rziceni	80
aslui	199
erind	374

Heuristics

The evaluation function h in greedy searches is also called a *heuristic* function or simply a *heuristic*.

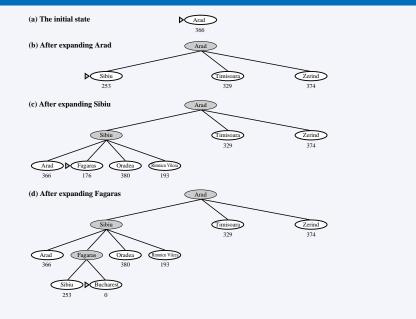
- The word *heuristic* is derived from the Greek word $\varepsilon v \rho \iota \sigma \kappa \varepsilon \iota \nu$ (note also: $\varepsilon v \rho \eta \kappa \alpha!$)
- The mathematician Polya introduced the word in the context of problem solving techniques.
- In AI it has two meanings:
 - Heuristics are fast but in certain situations incomplete methods for problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually generally incomplete).
 - Heuristics are methods that improve the search in the average-case.
- \rightarrow In all cases, the heuristic is *problem-specific* and *focuses* the search!

Foundations of Al

(University of Freiburg)

Mai 17, 2011 6 / 32

Greedy Search from Arad to Bucharest



Greedy Search - Properties

- a good heuristic might reduce search time drastically
- non-optimal
- incomplete
- graph-search version is complete only in finite spaces

Can we do better?

(University of Freiburg)

Foundations of AI

Mai 17, 2011 9 / 32

A*: Minimization of the Estimated Path Costs

 A^* combines the greedy search with the uniform-search strategy: Always expand node with lowest f(n) first, where

g(n) =actual cost from the initial state to n.

h(n) =estimated cost from n to the next goal.

f(n) = g(n) + h(n),

the estimated cost of the cheapest solution through n.

Let $h^*(n)$ be the actual cost of the optimal path from n to the next goal. h is *admissible* if the following holds for all n:

$$h(n) \le h^*(n)$$

We require that for A^* , h is admissible (example: straight-line distance is admissible).

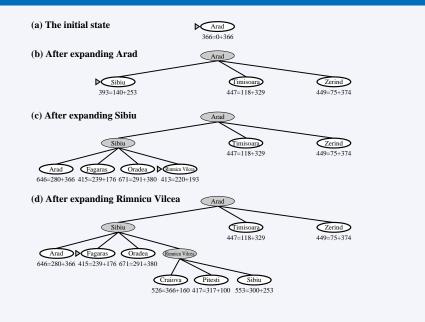
In other words, h is an *optimistic* estimate of the costs that actually occur.

(University of Freiburg)

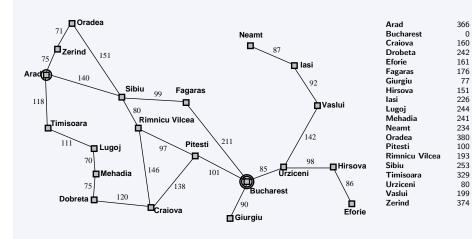
Foundations of AI

Mai 17, 2011 10 / 32

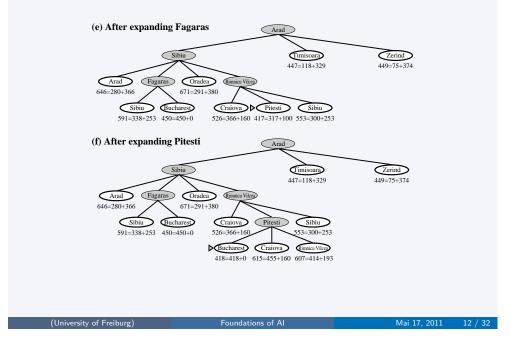
A* Search from Arad to Bucharest



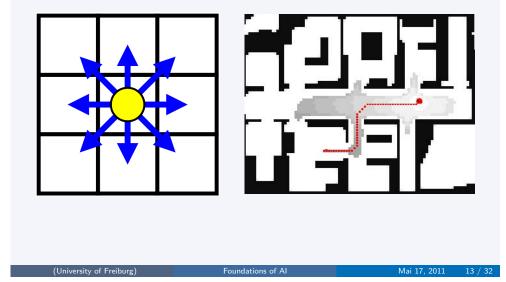
A* Search Example



A* Search from Arad to Bucharest



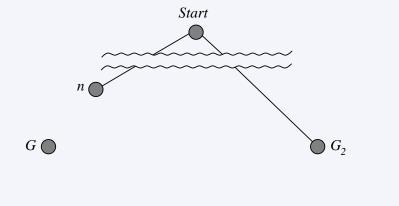
Example: Path Planning for Robots in a Grid-World



Optimality of A*

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f^* , but A^* has found another node G_2 with $g(G_2) > f^*$.



Optimality of A*

Let n be a node on the path from the start to ${\cal G}$ that has not yet been expanded. Since h is admissible, we have

$$f(n) \le f^*.$$

Since n was not expanded before G_2 , the following must hold:

$$f(G_2) \le f(n)$$

and

 $f(G_2) \le f^*.$

t follows from
$$h(G_2) = 0$$
 that

 $g(G_2) \le f^*.$

 \rightarrow Contradicts the assumption!

Mai 17, 2011 14 / 32

Completeness and Complexity

Completeness:

If a solution exists, A^{*} will find it provided that (1) every node has a finite number of successor nodes, and (2) there exists a positive constant $\delta > 0$ such that every step has at least cost δ .

 \rightarrow there exists only a finite number of nodes n with $f(n) \leq f^*$.

Complexity:

In general, still exponential in the path length of the solution (space, time)

More refined complexity results depend on the assumptions made, e.g. on the quality of the heuristic function. Example:

In the case in which $|h^*(n) - h(n)| \le O(\log(h^*(n)))$, only one goal state exists, and the search graph is a tree, a sub-exponential number of nodes will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].

Foundations of AI

(University of Freiburg)

Mai 17, 2011

16 / 32

18 / 32

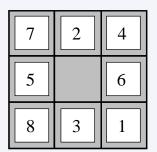
Empirical Evaluation

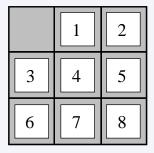
- d = distance from goal
- Average over 100 instances

	Search Co	generated)	Effective Branching Factor			
d	IDS	$A^*(h_1)$	$A^*(h_2)$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	-	539	113	-	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.47
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

Foundations of A

Heuristic Function Example





Start State

Goal State

- h_1 = the number of tiles in the wrong position
- h_2 = the sum of the distances of the tiles from their goal positions (*Manhattan distance*)

(University of Freiburg)

Foundations of AI

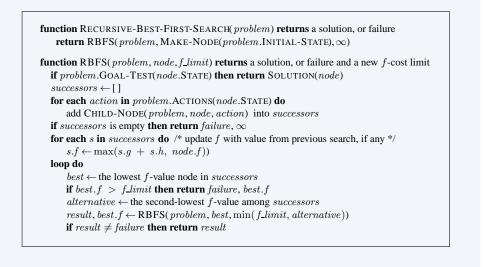
Mai 17, 2011 17 /

Variants of A*

A* in general still suffers from exponential memory growth. Therefore, several refinements have been suggested:

- iterative-deepening A*, where the f-costs are used to define the cutoff (rather than the depth of the search tree): IDA*
- Recursive Best First Search (RBFS): introduces a variable *f_limit* to keep track of the best alternative path available from any ancestor of the current node. If current node exceeds this limit, recursion unwinds back to the alternative path.
- other alternatives (not discussed here) memory-bounded A* (MA*), and simplified MA*, SMA*.

Recursive Best First Search



(University of Freiburg)

Foundations of AI

Mai 17, 2011 20 / 32

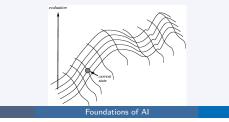
Example: 8-Queens Problem (1)

Example state with heuristic cost estimate h = 17 (counts the number of pairs threatening each other directly or indirectly).

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	Ŵ	13	16	13	16
Ŵ	14	17	15	Ŵ	14	16	16
17	Ŵ	16	18	15	Ŵ	15	Ŵ
18	14	Ŵ	15	15	14	Ŵ	16
14	14	13	17	12	14	12	18

Local Search Methods

- In many problems, it is unimportant how the goal is reached only the goal itself matters (8-queens problem, VLSI Layout, TSP).
- If in addition a quality measure for states is given, a **local search** can be used to find solutions.
- operates using a single current node (rather than multiple paths)
- use very little memory
- Idea: Begin with a randomly-chosen configuration and improve on it stepwise → Hill Climbing.
- note: can be used for maximisation or minimisation respectively (see 8 queens example)



Mai 17, 2011 21 / 3

Hill Climbing

(University of Freiburg

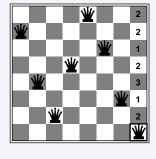
function HILL-CLIMBING(*problem*) returns a state that is a local maximum

 $current \leftarrow \mathsf{MAKE}\text{-NODE}(problem.\mathsf{INITIAL}\text{-}\mathsf{STATE})$ **loop do**

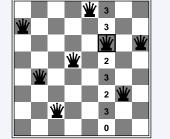
 $\begin{array}{l} \textit{neighbor} \leftarrow a \ \textit{highest-valued successor of } \textit{current} \\ \textbf{if neighbor.Value} \leq \textit{current.Value then return } \textit{current.State} \\ \textit{current} \leftarrow \textit{neighbor} \end{array}$

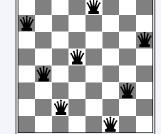
Example: 8-Queens Problem (2)

Possible realisation of a hill-climbing algorithm: Select a column and move the queen to the square with the fewest conflicts.



(University of Freiburg)





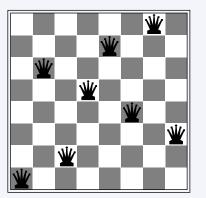
Mai 17, 2011

24 / 32

Example: 8-Queens Problem (Local Minimum)

Local minimum (h = 1) of the 8-Queens Problem. Every successor has a higher cost.

Foundations of AI



Problems with Local Search Methods

- Local maxima: The algorithm finds a sub-optimal solution.
- *Plateaus:* Here, the algorithm can only explore at random.
- Ridges: Similar to plateaus.

Solutions:

- Start over when no progress is being made.
- $\bullet \ \ ``Inject \ noise'' \ \rightarrow \ random \ walk$

Which strategies (with which parameters) are successful (within a problem class) can usually only empirically be determined.

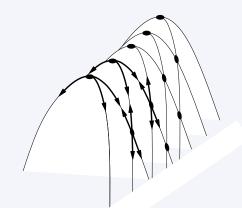
(University of Freiburg)

Foundations of AI

Mai 17, 2011 25 / 32

Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local maxima, that are not directly connected to each other. From each local maximum, all the available actions point downhill.



Foundations of A

Performance figures for the 8-Queens Problem

8 queens has about $8^8\approx 17\ million$ states. Starting from a random initialisation, hill-climbing directly finds a solution in about 14% of the cases. Needs in average only 4 steps!

Better algorithm: allow sideway moves (no improvement), but restrict the number of moves (avoid infinite loops!).

E.g: max. 100 moves: solves 94%, number of steps raises to 21 steps for successful instances and 64 for each failure.

(University of Freiburg)

Foundations of AI

Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by "crossing", "mutating", and "selecting" successful solutions.

Ingredients:

- Coding of a solution into a string of symbols or bit-string
- A fitness function to judge the worth of configurations
- A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by the number of non-attacks. The population consists of a set of arrangements of queens.

Simulated Annealing

In the simulated annealing algorithm, "noise" is injected systematically: first a lot, then gradually less.

```
\begin{array}{l} \textbf{function SIMULATED-ANNEALING}(problem, schedule) \textbf{ returns a solution state}\\ \textbf{inputs:} problem, a problem\\ schedule, a mapping from time to "temperature"\\ current \leftarrow MAKE-NODE(problem.INITIAL-STATE)\\ \textbf{for } t=1 \textbf{ to } \infty \textbf{ do}\\ T \leftarrow schedule(t)\\ \textbf{ if } T=0 \textbf{ then return } current\\ next \leftarrow a randomly selected successor of current\\ \Delta E \leftarrow next.VALUE - current.VALUE\\ \textbf{ if } \Delta E > 0 \textbf{ then } current \leftarrow next\\ \textbf{ else } current \leftarrow next \text{ only with probability } e^{\Delta E/T}\\ \end{array}
```

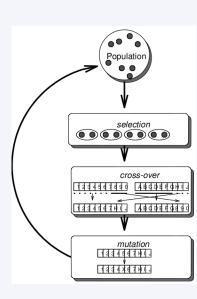
Has been used since the early 80's for VSLI layout and other optimization problems.

```
(University of Freiburg)
```

Foundations of AI

Mai 17, 2011 29 / 32

Selection, Mutation, and Crossing



Many variations:

how selection will be applied, what type of cross-over operators will be used, etc.

Selection of individuals according to a fitness function and pairing

Calculation of the breaking points and recombination

According to a given probability elements in the string are modified.

Mai 17, 2011

28 / 32

Summary

- Heuristics focus the search
- Best-first search expands the node with the highest worth (defined by any measure) first.
- With the minimization of the evaluated costs to the goal *h* we obtain a greedy search.
- The minimization of f(n) = g(n) + h(n) combines uniform and greedy searches. When h(n) is admissible, i.e., h^* is never overestimated, we obtain the A^{*} search, which is complete and optimal.
- IDA* is a combination of the iterative-deepening and A* searches.
- Local search methods only ever work on one state, attempting to improve it step-wise.
- Genetic algorithms imitate evolution by combining good solutions.

Foundations of AI

7, 2011 32 /