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Best-First Search

Search procedures differ in the way they determine the next node to
expand.

Uninformed Search: Rigid procedure with no knowledge of the cost of a
given node to the goal.

Informed Search: Knowledge of the worth of expanding a node n is
given in the form of an evaluation function f(n),
which assigns a real number to each node. Mostly,
f(n) includes as a component a heuristic function
h(n), which estimates the costs of the cheapest
path from n to the goal.

Best-First Search: Informed search procedure that expands the node
with the “best” f -value first.
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General Algorithm 5

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state ofproblem
initialize the explored set to be empty
loop do

if the frontier is emptythen return failure
choose a leaf node and remove it from the frontier
if the node contains a goal statethen return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algorithms. The
parts of GRAPH-SEARCHmarked in bold italic are the additions needed to handle repeated states.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node← a node with STATE = problem .INITIAL -STATE, PATH-COST= 0
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
frontier← a FIFO queue withnode as the only element
explored←an empty set
loop do

if EMPTY?(frontier ) then return failure
node← POP( frontier ) /* chooses the shallowest node infrontier */
addnode .STATE to explored
for each action in problem .ACTIONS(node.STATE) do

child←CHILD -NODE(problem ,node,action)
if child .STATE is not inexplored or frontier then

if problem .GOAL -TEST(child .STATE) then return SOLUTION(child)
frontier← INSERT(child , frontier )

Figure 3.11 Breadth-first search on a graph.

Best-first search is an instance of the general Tree-Search algorithm in
which frontier is a priority queue ordered by an evaluation function f .

When f is always correct, we do not need to search!
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Greedy Search

A possible way to judge the “worth” of a node is to estimate its path-costs
to the goal.

h(n) = estimated path-costs from n to the goal

The only real restriction is that h(n) = 0 if n is a goal.

A best-first search using h(n) as the evaluation function, i.e. f(n) = g(n)
is called a greedy search.

Example: Route-finding problem:
h(n) = straight-line distance from n to the goal
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Heuristics

The evaluation function h in greedy searches is also called a heuristic
function or simply a heuristic.

The word heuristic is derived from the Greek word ευρισκειν (note
also: ευρηκα!)

The mathematician Polya introduced the word in the context of problem
solving techniques.

In AI it has two meanings:

Heuristics are fast but in certain situations incomplete methods for
problem-solving [Newell, Shaw, Simon 1963] (The greedy search is actually
generally incomplete).
Heuristics are methods that improve the search in the average-case.

→ In all cases, the heuristic is problem-specific and focuses the search!
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Greedy Search Example
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Bucharest 0
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Drobeta 242
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Giurgiu 77
Hirsova 151
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Lugoj 244
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Greedy Search from Arad to Bucharest
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Greedy Search - Properties

a good heuristic might reduce search time drastically

non-optimal

incomplete

graph-search version is complete only in finite spaces

Can we do better?
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A∗: Minimization of the Estimated Path Costs

A∗ combines the greedy search with the uniform-search strategy:
Always expand node with lowest f(n) first, where

g(n) = actual cost from the initial state to n.
h(n) = estimated cost from n to the next goal.
f(n) = g(n) + h(n),

the estimated cost of the cheapest solution through n.

Let h∗(n) be the actual cost of the optimal path from n to the next goal.
h is admissible if the following holds for all n:

h(n) ≤ h∗(n)

We require that for A∗, h is admissible (example: straight-line distance is
admissible).
In other words, h is an optimistic estimate of the costs that actually occur.
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A∗ Search Example
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A∗ Search from Arad to Bucharest

(a) The initial state
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(c) After expanding Sibiu
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A∗ Search from Arad to Bucharest
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Example: Path Planning for Robots in a Grid-World
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Optimality of A∗

Claim: The first solution found has the minimum path cost.

Proof: Suppose there exists a goal node G with optimal path cost f∗, but
A∗ has found another node G2 with g(G2) > f∗.

G

n

G2

Start
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Optimality of A∗

Let n be a node on the path from the start to G that has not yet been
expanded. Since h is admissible, we have

f(n) ≤ f∗.

Since n was not expanded before G2, the following must hold:

f(G2) ≤ f(n)

and
f(G2) ≤ f∗.

It follows from h(G2) = 0 that

g(G2) ≤ f∗.

→ Contradicts the assumption!
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Completeness and Complexity

Completeness:

If a solution exists, A∗ will find it provided that (1) every node has a finite
number of successor nodes, and (2) there exists a positive constant δ > 0
such that every step has at least cost δ.

→ there exists only a finite number of nodes n with f(n) ≤ f∗.

Complexity:

In general, still exponential in the path length of the solution (space, time)

More refined complexity results depend on the assumptions made, e.g. on
the quality of the heuristic function. Example:

In the case in which |h∗(n)− h(n)| ≤ O(log(h∗(n)), only one goal state
exists, and the search graph is a tree, a sub-exponential number of nodes
will be expanded [Gaschnig, 1977, Helmert & Roeger, 2008].
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Heuristic Function Example

2

Start State Goal State
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h1 = the number of tiles in the wrong position
h2 = the sum of the distances of the tiles from their goal positions

(Manhattan distance)
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Empirical Evaluation

d = distance from goal

Average over 100 instances

Search Cost (nodes generated) Effective Branching Factor

d IDS A∗(h1) A∗(h2) IDS A∗(h1) A∗(h2)

2 10 6 6 2.45 1.79 1.79

4 112 13 12 2.87 1.48 1.45

6 680 20 18 2.73 1.34 1.30

8 6384 39 25 2.80 1.33 1.24

10 47127 93 39 2.79 1.38 1.22

12 3644035 227 73 2.78 1.42 1.24

14 - 539 113 - 1.44 1.23

16 - 1301 211 - 1.45 1.25

18 - 3056 363 - 1.46 1.26

20 - 7276 676 - 1.47 1.47

22 - 18094 1219 - 1.48 1.28

24 - 39135 1641 - 1.48 1.26
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Variants of A∗

A∗ in general still suffers from exponential memory growth. Therefore,
several refinements have been suggested:

iterative-deepening A∗, where the f-costs are used to define the cutoff
(rather than the depth of the search tree): IDA∗

Recursive Best First Search (RBFS): introduces a variable f limit to
keep track of the best alternative path available from any ancestor of
the current node. If current node exceeds this limit, recursion unwinds
back to the alternative path.

other alternatives (not discussed here) memory-bounded A∗ (MA∗), and
simplified MA∗, SMA∗.
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Recursive Best First Search

7

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth = 0 to∞ do

result←DEPTH-L IMITED -SEARCH(problem ,depth )
if result 6= cutoff then return result

Figure 3.17 The iterative deepening search algorithm, which repeatedly applies depth-limited search
with increasing limits. It terminates when a solution is found or if the depth-limited search returns
failure, meaning that no solution exists.

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
return RBFS(problem , MAKE-NODE(problem .INITIAL -STATE),∞)

function RBFS(problem ,node, f limit) returns a solution, or failure and a newf -cost limit
if problem .GOAL -TEST(node .STATE) then return SOLUTION(node)
successors← [ ]
for each action in problem .ACTIONS(node .STATE) do

add CHILD -NODE(problem ,node ,action) into successors
if successors is emptythen return failure,∞
for each s in successors do /* updatef with value from previous search, if any */

s.f ←max(s.g + s.h, node .f ))
loop do

best← the lowestf -value node insuccessors
if best .f > f limit then return failure, best .f
alternative← the second-lowestf -value amongsuccessors
result ,best .f←RBFS(problem ,best ,min( f limit, alternative))
if result 6= failure then return result

Figure 3.24 The algorithm for recursive best-first search.
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Local Search Methods

In many problems, it is unimportant how the goal is reached - only the
goal itself matters (8-queens problem, VLSI Layout, TSP).

If in addition a quality measure for states is given, a local search can
be used to find solutions.

operates using a single current node (rather than multiple paths)
use very little memory
Idea: Begin with a randomly-chosen configuration and improve on it
stepwise → Hill Climbing.
note: can be used for maximisation or minimisation respectively (see 8
queens example)
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Example: 8-Queens Problem (1)

Example state with heuristic cost estimate h = 17 (counts the number of
pairs threatening each other directly or indirectly).
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Hill Climbing

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current
next←a randomly selected successor ofcurrent
∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next
else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8
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Example: 8-Queens Problem (2)

Possible realisation of a hill-climbing algorithm:
Select a column and move the queen to the square with the fewest
conflicts.
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Problems with Local Search Methods

Local maxima: The algorithm finds a sub-optimal solution.

Plateaus: Here, the algorithm can only explore at random.

Ridges: Similar to plateaus.

Solutions:

Start over when no progress is being made.

“Inject noise” → random walk

Which strategies (with which parameters) are successful (within a problem
class) can usually only empirically be determined.
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Example: 8-Queens Problem (Local Minimum)

Local minimum (h = 1) of the 8-Queens Problem. Every successor has a
higher cost.
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Illustration of the ridge problem

The grid of states (dark circles) is superimposed on a ridge rising from left
to right, creating a sequence of local maxima, that are not directly
connected to each other. From each local maximum, all the available
actions point downhill.
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Performance figures for the 8-Queens Problem

8 queens has about 88 ≈ 17 million states. Starting from a random
initialisation, hill-climbing directly finds a solution in about 14% of the
cases. Needs in average only 4 steps!

Better algorithm: allow sideway moves (no improvement), but restrict the
number of moves (avoid infinite loops!).

E.g: max. 100 moves: solves 94%, number of steps raises to 21 steps for
successful instances and 64 for each failure.
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Simulated Annealing

In the simulated annealing algorithm, “noise” is injected systematically:
first a lot, then gradually less.

4 BEYOND CLASSICAL
SEARCH

function HILL -CLIMBING(problem) returns a state that is a local maximum

current←MAKE-NODE(problem .INITIAL -STATE)
loop do

neighbor←a highest-valued successor ofcurrent
if neighbor.VALUE ≤ current.VALUE then return current .STATE

current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basiclocal search technique. At
each step the current node is replaced by the best neighbor; in this version, that means the neighbor
with the highest VALUE, but if a heuristic cost estimateh is used, we would find the neighbor with the
lowesth.

function SIMULATED -ANNEALING(problem ,schedule) returns a solution state
inputs: problem , a problem

schedule , a mapping from time to “temperature”

current←MAKE-NODE(problem .INITIAL -STATE)
for t = 1 to∞ do

T← schedule(t)
if T = 0 then return current
next←a randomly selected successor ofcurrent
∆E← next .VALUE – current .VALUE

if ∆E > 0 then current←next
else current←next only with probabilitye∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastichill climbing where some
downhill moves are allowed. Downhill moves are accepted readily early in the annealing schedule and
then less often as time goes on. Theschedule input determines the value of the temperatureT as a
function of time.

8

Has been used since the early 80’s for VSLI layout and other optimization
problems.
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Genetic Algorithms

Evolution appears to be very successful at finding good solutions.

Idea: Similar to evolution, we search for solutions by “crossing”,
“mutating”, and “selecting” successful solutions.

Ingredients:

Coding of a solution into a string of symbols or bit-string

A fitness function to judge the worth of configurations

A population of configurations

Example: 8-queens problem as a chain of 8 numbers. Fitness is judged by
the number of non-attacks. The population consists of a set of
arrangements of queens.
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Selection, Mutation, and Crossing

Many variations:

how selection will be applied, what
type of cross-over operators will be
used, etc.

Selection of individuals according
to a fitness function and pairing

Calculation of the breaking points
and recombination

According to a given probability
elements in the string are modi-
fied.
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Summary

Heuristics focus the search

Best-first search expands the node with the highest worth (defined by
any measure) first.

With the minimization of the evaluated costs to the goal h we obtain a
greedy search.

The minimization of f(n) = g(n) + h(n) combines uniform and greedy
searches. When h(n) is admissible, i.e., h∗ is never overestimated, we
obtain the A∗ search, which is complete and optimal.

IDA∗ is a combination of the iterative-deepening and A∗ searches.

Local search methods only ever work on one state, attempting to
improve it step-wise.

Genetic algorithms imitate evolution by combining good solutions.
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